季节性箱形图在R或MATLAB
季节性箱形图在R或MATLAB
DATE obs1 obs2 obs3 1981-01-01 2032.409 3142.46 1741.143
1981-01-02 2023.687 3870.04 1735.256
1981-01-03 2014.274 4126.25 1728.556
1981-01-04 2005.795 2615.91 1722.985
1981-01-05 2000.674 2940.83 1722.317
1981-01-06 1998.477 3258.69 1723.937
1981-01-07 1997.014 3371.6 1724.104
1981-01-08 1995.576 3184.13 1722.624
1981-01-09 1993.706 3540.76 1719.592
1981-01-10 1991.286 3312.43 1715.156
1981-01-11 1988.633 3028.65 1710.141
1981-01-12 1986.147 3212.79 1705.183
1981-01-13 1984.229 3193.23 1700.789
1981-01-14 1982.756 3294.52 1697.785
1981-01-15 1981.548 3553.78 1696.068
1981-01-16 1980.561 3492.28 1694.544
1981-01-17 1979.792 2452.09 1692.36
1981-01-18 1979.224 1873.82 1689.525
1981-01-19 1978.845 3218.28 1686.452
我需要绘制季节(冬季,春季,夏季和秋季)箱形图中的R为每日数据如上所示。对于不同的电台,我有10年以上的格式数据。情节应该在一个数字中,每个季节都有多个盒子情节。
回答:
使用tidyverse
和lubridate
的解决方案。 tidyverse
包括dplyr
和tidyr
来执行数据处理,并且ggplot2
来创建该图。 lubridate
是处理数据帧中的日期。
由于您提供的数据集不是很有用,因为它仅包含一月份的一些记录,因此无法创建显示季节差异的箱线图,因此我决定创建一个新的示例数据框。我的示例数据框架的结构与您的数据集相似,应该为您提供一些提示,作为您现实世界问题的出发点。
# Set the seed for reproducibility set.seed(123)
library(tidyverse)
library(lubridate)
# Create example data frame
dt <- data_frame(DATE = seq(ymd("1980-01-01"), ymd("1989-12-31"), by = 1)) %>%
mutate(obs1 = rnorm(nrow(.), mean = 0, sd = 1),
obs2 = rnorm(nrow(.), mean = 1, sd = 2),
obs3 = rnorm(nrow(.), mean = 2, sd = 3))
head(dt)
# # A tibble: 6 x 4
# DATE obs1 obs2 obs3
# <date> <dbl> <dbl> <dbl>
# 1 1980-01-01 -0.56047565 0.7874145 2.7827006
# 2 1980-01-02 -0.23017749 0.1517417 8.5720252
# 3 1980-01-03 1.55870831 0.7193725 1.3293478
# 4 1980-01-04 0.07050839 0.5454177 0.3253155
# 5 1980-01-05 0.12928774 1.41.1245771
# 6 1980-01-06 1.71506499 -0.6491910 4.5034395
tail(dt)
# # A tibble: 6 x 4
# DATE obs1 obs2 obs3
# <date> <dbl> <dbl> <dbl>
# 1 1989-12-26 -0.3629796 0.6750946 0.8586325
# 2 1989-12-27 0.1102218 2.8572337 9.8541328
# 3 1989-12-28 -0.2700741 1.7614026 1.9109596
# 4 1989-12-29 0.6920973 0.5275611 -0.4756240
# 5 1989-12-30 0.9282803 1.3811225 1.5222535
# 6 1989-12-31 0.5931301 -1.6638739 4.1157087
示例数据框包含10年3个观察组的记录。每列的值都是正态分布,具有不同的平均值和标准偏差。
第一步是通过将数据集从宽格式转换为长格式并添加显示季节信息的列来处理数据帧。
dt2 <- dt %>% # Convert data frame from lwide format to long format
gather(Observation, Value, -DATE) %>%
# Remove "obs" in the Observation column
mutate(Observation = str_replace(Observation, "obs", "")) %>%
# Convert the DATE column to date class
mutate(DATE = ymd(DATE)) %>%
# Create Month column
mutate(Month = month(DATE)) %>%
# Create Season column
mutate(Season = case_when(
Month %in% c(12, 1, 2) ~ "winter",
Month %in% c(3, 4, 5) ~ "spring",
Month %in% c(6, 7, 8) ~ "summer",
Month %in% c(9, 10, 11) ~ "fall",
TRUE ~ NA_character_
))
在那之后,我们就可以使用ggplot2
创建箱线图。请注意,我使用stat_summary
为每个组添加红线来表示平均值。
# Create a boxplot using ggplot2 # Specify the aesthetics
ggplot(dt2, aes(x = Season, y = Value, fill = Observation)) +
# Specify the geom to be boxplot
geom_boxplot() +
# Add a red line to the mean
stat_summary(aes(ymax = ..y.., ymin = ..y..),
fun.y = "mean",
geom = "errorbar", # Use geom_errorbar to add line as mean
color = "red",
width = 0.7,
position = position_dodge(width = 0.75), # Add the line to each group
show.legend = FALSE)
回答:
好吧...第一步是建立可以检测在一个给定的日期落在本赛季的功能。幸运的是,我很早以前就已经开发出了能够在南半球处理季节(这是逆转的)。
该函数没有执行任何完整性检查,因为我已经将它与已经过清理的数据集一起使用,但最终实现一些应该不难(除非您决定在使用它之前对数据集进行清理)。它以矢量化的方式工作,以最大化Matlab中计算的性能。
这里是:
function season = GetSeason(date,southern_hemisphere) if (nargin == 1)
southern_hemisphere = false;
end
[~,month,day] = datevec(date);
offset = month + (day/100);
winter = (offset < 3.21) | (offset >= 12.22);
spring = ~winter & (offset < 6.21);
summer = ~winter & ~spring & (offset < 9.23);
autumn = ~winter & ~spring & ~summer;
offset(spring) = 0;
offset(summer) = 1;
offset(autumn) = 2;
offset(winter) = 3;
if (southern_hemisphere)
offset = offset + 2;
end
season = mod(offset,4) + 1;
end
现在,第一步,你的脚本中,是从一个数据集文件中提取你的观察。为了为您创建完整的演示,我创建了一个Excel
数据集。但你也可以使用一个CSV
数据集在用Matlab处理的代码或其它格式的文件几乎没有变化:
% detect the dataset columns format opts = detectImportOptions('data.xlsx');
% impose a specific format for the dataset columns
opts = setvartype(opts,{'datetime' 'double' 'double' 'double'});
% extract data in a table variable
data = readtable('data.xlsx',opts);
% sanitize the table variable removing the rows with missing or invalid values
data = rmmissing(data);
% sort the table variable rows by date (default first rows, default ascending)
data = sortrows(data);
第二次测试包括在获得相应的季节为观察日期:
seasons = GetSeason(data.Date);
第三步,假设我们只对观测的第一列称为Obs1
执行所有这一过程:
spring_1 = data.Obs1(seasons == 1); summer_1 = data.Obs1(seasons == 2);
autumn_1 = data.Obs1(seasons == 3);
winter_1 = data.Obs1(seasons == 4);
第四步也是最后一步包括在一个图表中绘制每个季节的一个箱形图(必须将变量groups
作为参数传递给boxplot
函数,以便知道后者需要绘制多少个箱子并使用哪些值):
groups = [ ones(size(spring_1));
2 * ones(size(summer_1));
3 * ones(size(autumn_1));
4 * ones(size(winter_1));
];
figure();
boxplot([spring_1; summer_1; autumn_1; winter_1],groups);
set(gca,'XTickLabel',{'Spring' 'Summer' 'Autumn' 'Winter'});
这里是结果:
以饱满的工作代码更新所有意见
opts = detectImportOptions('data.xlsx'); opts = setvartype(opts,{'datetime' 'double' 'double' 'double'});
data = readtable('data.xlsx',opts);
data = rmmissing(data);
data = sortrows(data);
seasons = GetSeason(data.Date);
spring_1 = data.Obs1(seasons == 1);
summer_1 = data.Obs1(seasons == 2);
autumn_1 = data.Obs1(seasons == 3);
winter_1 = data.Obs1(seasons == 4);
spring_2 = data.Obs2(seasons == 1);
summer_2 = data.Obs2(seasons == 2);
autumn_2 = data.Obs2(seasons == 3);
winter_2 = data.Obs2(seasons == 4);
spring_3 = data.Obs3(seasons == 1);
summer_3 = data.Obs3(seasons == 2);
autumn_3 = data.Obs3(seasons == 3);
winter_3 = data.Obs3(seasons == 4);
plot_data = [
spring_1;
summer_1;
autumn_1;
winter_1;
spring_2;
summer_2;
autumn_2;
winter_2;
spring_3;
summer_3;
autumn_3;
winter_3
];
plot_groups = [
(1 * ones(size(spring_1))) (1 * ones(size(spring_1)));
(1 * ones(size(summer_1))) (2 * ones(size(summer_1)));
(1 * ones(size(autumn_1))) (3 * ones(size(autumn_1)));
(1 * ones(size(winter_1))) (4 * ones(size(winter_1)));
(2 * ones(size(spring_2))) (5 * ones(size(spring_2)));
(2 * ones(size(summer_2))) (6 * ones(size(summer_2)));
(2 * ones(size(autumn_2))) (7 * ones(size(autumn_2)));
(2 * ones(size(winter_2))) (8 * ones(size(winter_2)));
(3 * ones(size(spring_3))) (9 * ones(size(spring_3)));
(3 * ones(size(summer_3))) (10 * ones(size(summer_3)));
(3 * ones(size(autumn_3))) (11 * ones(size(autumn_3)));
(3 * ones(size(winter_3))) (12 * ones(size(winter_3)))
];
labels_obs = {'' '' '' '' '' '' '' '' '' '' '' ''};
labels_season = repmat({'Spring' 'Summer' 'Autumn' 'Winter'},1,3);
figure('Units','normalized','Position',[0.05 0.1 0.9 0.8]);
boxplot(plot_data,plot_groups, ...
'BoxStyle','outline', ...
'FactorGap',[5 1], ...
'Labels',{labels_obs; labels_season}, ...
'Notch','on');
colors = repmat('wcyg',1,3);
h = findobj(gca,'Tag','Box');
for i = 1:numel(h)
patch(get(h(i),'XData'),get(h(i),'YData'),colors(i),'FaceAlpha',0.5);
end
h = findall(allchild(findall(gca,'Type','hggroup')),'Type','text','String','');
positions = cell2mat(get(h,'pos'));
positions_new = num2cell([mean(reshape(positions(:,1),4,[]))' positions(1:4:end,2:end)],2);
set(h(1:4:end),{'Position'},positions_new,{'String'},{'Observations 3'; 'Observations 2'; 'Observations 1'})
h = findall(allchild(findall(gca,'Type','hggroup')),'Type','text','String','');
delete(h);
结果:
以上是 季节性箱形图在R或MATLAB 的全部内容, 来源链接: utcz.com/qa/258832.html