关于多商品优惠的算法问题,有大佬算法厉害的吗?

大致的思路是这样的,先计算单个商品的多件折扣先,然后得出每个商品的总价格

折扣类型的优惠不需要混合计算,只需要单个商品计算即可,主要是满减优惠,是多商品组合计算的

然后根据每个商品享受的公共满减优惠,组合出最大的优惠,优惠过的商品不能再和其他的商品优惠

有没有大佬用JavaScript或者java实现一遍,救救孩子吧

图片看不清楚可以点击这个看大图
https://image-static.segmentf...

关于多商品优惠的算法问题,有大佬算法厉害的吗?

数据库的数据是这样子的

let { multiply } = require("mathjs");

let tb_goods = [

{

id: 1,

goodsName: "A",

price: 10,

// 绑定的优惠折扣

spceList: [101, 102, 105],

},

{

id: 2,

goodsName: "B",

price: 6,

spceList: [101, 102, 105, 106],

},

{

id: 3,

goodsName: "C",

price: 7,

spceList: [101, 103, 107],

},

{

id: 4,

goodsName: "D",

price: 7,

spceList: [101, 104, 107],

},

];

let tb_spce = [

{

id: 101,

type: "满减",

msg: "满20减2",

full: 20,

reduction: 2,

},

{

id: 102,

type: "满减",

msg: "满35减6",

full: 35,

reduction: 6,

},

{

id: 103,

type: "满减",

msg: "满28减3",

full: 28,

reduction: 3,

},

{

id: 104,

type: "满减",

msg: "满30减5",

full: 30,

reduction: 5,

},

{

id: 105,

type: "折扣",

msg: "2件9.5折",

full: 2,

reduction: 0.95,

},

{

id: 106,

type: "折扣",

msg: "3件7折",

full: 3,

reduction: 0.7,

},

{

id: 107,

type: "折扣",

msg: "2件8折",

full: 2,

reduction: 0.8,

},

];

// 测试购买的商品,3个A,6个B,3个C

let testBuy = [

{

goodsId: 1,

num: 3,

},

{

goodsId: 2,

num: 6,

},

{

goodsId: 3,

num: 3,

},

];

testBuy.map((buyItem) => {

// 先找到购买的这个商品的数据

let goodsInfo = tb_goods.find((goodsItem) => goodsItem.id == buyItem.goodsId);

// 得到这个商品的折扣优惠数据

let spceList = [];

tb_spce.filter((spceItem) => {

if (goodsInfo.spceList.includes(spceItem.id)) {

spceList.push(spceItem);

}

});

// 得出总价

let money = multiply(goodsInfo.price, buyItem.num);

// 备用的总价,为了计算折扣使用

let money2 = multiply(goodsInfo.price, buyItem.num);

spceList.map((spceItem) => {

// 是折扣类型的

if (spceItem.type === "折扣") {

// 满足大于x件

if (buyItem.num >= spceItem.full) {

console.log(spceItem.reduction);

let reducMoney = multiply(money2, spceItem.reduction);

if (reducMoney < money) {

money = reducMoney;

}

}

}

buyItem.money = money;

});

});

console.log(testBuy);

// [

// { goodsId: 1, num: 3, money: 28.5 },

// { goodsId: 2, num: 6, money: 25.2 },

// { goodsId: 3, num: 3, money: 16.8 }

// ]

// 最后得出这段数据,然后再次根据多个商品组合出来的满减优惠得出总价格


回答:

组合优惠卷问题,基础算法可以使用 回溯法 遍历所有可能性。

下面是参照你的数据格式写的算法,返回结果格式如下:

{

// 最终折扣后价格

total: 93.1,

// 满减总金额

discount: 11,

// 使用的满减组合策略

// 以下表示 商品 1,2 采用 102 满减组合,减了 6 元;

// 商品 4 可以独立使用 104 满减, 减了 5 元;

// 一共减了 11 元;

compose: [

[

// 商品ID, 满减金额,自身折扣后金额,满减优惠 ID

[1, 6, 28.5, 102],

[2, 6, 25.2, 102],

],

[[4, 5, 33.6, 104]],

],

}

let tb_goods = [

{

id: 1,

goodsName: "A",

price: 10,

// 绑定的优惠折扣

spceList: [101, 102, 105],

},

{

id: 2,

goodsName: "B",

price: 6,

spceList: [101, 102, 105, 106],

},

{

id: 3,

goodsName: "C",

price: 7,

spceList: [101, 103, 107],

},

{

id: 4,

goodsName: "D",

price: 7,

spceList: [101, 104, 107],

},

];

let tb_spce = [

{

id: 101,

type: "满减",

msg: "满20减2",

full: 20,

reduction: 2,

},

{

id: 102,

type: "满减",

msg: "满35减6",

full: 35,

reduction: 6,

},

{

id: 103,

type: "满减",

msg: "满28减3",

full: 28,

reduction: 3,

},

{

id: 104,

type: "满减",

msg: "满30减5",

full: 30,

reduction: 5,

},

{

id: 105,

type: "折扣",

msg: "2件9.5折",

full: 2,

reduction: 0.95,

},

{

id: 106,

type: "折扣",

msg: "3件7折",

full: 3,

reduction: 0.7,

},

{

id: 107,

type: "折扣",

msg: "2件8折",

full: 2,

reduction: 0.8,

},

];

const compute = (goods = []) => {

const disGoodsMap = new Map();

let total = 0;

for (let good of goods) {

const g = tb_goods.find((g) => good.goodsId === g.id);

good.price = g.price;

good.totalPrice = g.price * good.num;

good.totalDisPrice = good.totalPrice;

g.spceList.forEach((id) => {

let ts = tb_spce.find((s) => s.id === id);

if (ts.type === "折扣") {

if (!ts || good.num < ts.full) return;

good.totalDisPrice =

Math.round(Math.min(good.totalDisPrice, good.totalPrice * ts.reduction) * 100) / 100;

} else {

let gs = disGoodsMap.get(ts);

if (!gs) {

gs = [];

disGoodsMap.set(ts, gs);

}

gs.push(good);

}

});

total += good.totalDisPrice;

}

const compose = [];

disGoodsMap.forEach((v, k) => {

disComposeBacktrace(0, v, k.full, k.reduction, [], compose, k.id);

});

const res = { total: total, discount: 0, compose: [] };

composeBacktrace(0, compose, [], new Set(), res, 0);

res.total = res.total - res.discount;

return res;

};

const composeBacktrace = (start, composes, trace, memo, res, discount) => {

if (discount > res.discount) {

res.discount = discount;

res.compose = [...trace];

}

for (let i = start; i < composes.length; i++) {

const cmp = composes[i];

if (cmp.some((c) => memo.has(c[0]))) continue;

trace.push(cmp);

cmp.forEach((c) => memo.add(c[0]));

composeBacktrace(i + 1, composes, trace, memo, res, discount + cmp[0][1]);

trace.pop();

cmp.forEach((c) => memo.delete(c[0]));

}

};

const disComposeBacktrace = (start, goods, target, discount, memo = [], res = [], disId) => {

if (target <= 0) {

res.push([...memo]);

return;

}

for (let i = start; i < goods.length; i++) {

const g = goods[i];

memo.push([g.goodsId, discount, g.totalDisPrice, disId]);

disComposeBacktrace(i + 1, goods, target - g.totalDisPrice, discount, memo, res, disId);

memo.pop();

}

};

const demo1 = [

{ goodsId: 1, num: 3 },

{ goodsId: 3, num: 3 },

];

const demo2 = [

{ goodsId: 1, num: 3 },

{ goodsId: 2, num: 6 },

{ goodsId: 3, num: 3 },

];

const demo3 = [

{ goodsId: 1, num: 3 },

{ goodsId: 2, num: 6 },

{ goodsId: 3, num: 3 },

{ goodsId: 4, num: 6 },

];

const demo4 = [

{ goodsId: 1, num: 3 },

{ goodsId: 3, num: 6 },

];

const demo5 = [

{ goodsId: 1, num: 3 },

{ goodsId: 3, num: 4 },

];

const demo6 = [

{ goodsId: 1, num: 2 },

{ goodsId: 2, num: 2 },

{ goodsId: 3, num: 2 },

{ goodsId: 4, num: 1 },

];

const demo7 = [

{ goodsId: 1, num: 1 },

{ goodsId: 3, num: 6 },

];

const res1 = compute(demo1);

console.log(JSON.stringify(res1));

// {"total":43.3,"discount":2,"compose":[[[1,2,28.5,101]]]}

const res2 = compute(demo2);

console.log(JSON.stringify(res2));

// {"total":64.5,"discount":6,"compose":[[[1,6,28.5,102],[2,6,25.2,102]]]}

const res3 = compute(demo3);

console.log(JSON.stringify(res3));

// {"total":93.1,"discount":11,"compose":[[[1,6,28.5,102],[2,6,25.2,102]],[[4,5,33.6,104]]]}

const res4 = compute(demo4);

console.log(JSON.stringify(res4));

// {"total":57.1,"discount":5,"compose":[[[1,2,28.5,101]],[[3,3,33.6,103]]]}

const res5 = compute(demo5);

console.log(JSON.stringify(res5));

// {"total":46.9,"discount":4,"compose":[[[1,2,28.5,101]],[[3,2,22.4,101]]]}

const res6 = compute(demo6);

console.log(JSON.stringify(res6));

// {"total":44.599999999999994,"discount":4,"compose":[[[1,2,19,101],[4,2,7,101]],[[2,2,11.4,101],[3,2,11.2,101]]]}

const res7 = compute(demo7);

console.log(JSON.stringify(res7));

// {"total":40.6,"discount":3,"compose":[[[3,3,33.6,103]]]}


回答:

策略模式适用你这种场景,可以去了解一下

以上是 关于多商品优惠的算法问题,有大佬算法厉害的吗? 的全部内容, 来源链接: utcz.com/p/933720.html

回到顶部