C/C++实现图形学扫描线填充算法
在上图形学课的时候,学习了扫描线填充算法。不过在完成实验的时候在真正理解了该算法,在此记录一下,如果有表达上的错误,欢迎指正!
扫描线填充算法通过在与图形相交的第(1,2)、(3,4)... 边之间划线不断不断填充图形。因此,在扫描时就需要确定什么时候与图形的某条边相交、划线的时候x的范围是多少以及划线时是从哪个交点画至另一个交点。
结构体如下所示:
为了节省存储的空间,边表项也使用链表结构,将图形中ymin值相同的边链接在同一个边表项后,这样在扫描的时候方便添加。
具体的流程如下:
一、初始化活动边表
1. 统计并初始化表项
2. 将每条边分别链接在表项后
二、 绘制与填充
1. 取出当前与扫描线相交的边
① 取出ymin 大于当前扫描线的y值的边
② 删除ymax 小于等于当前扫描线的边(①②过程可以排除掉与扫描线平行的边)
2. 将取出的边按照左右顺序排序(根据边的最低点的坐标与直线的斜率判断)
3. 划线并直接在原结构上修改边的x值(因为是在一个函数内,修改保存的值仅限于函数内,并不影响main函数中的值)
具体的代码如下所示,使用的库是EasyX(可以在http://www.easyx.cn/下载):
#include "graphics.h"
#include "stdio.h"
#include "conio.h"
#include <stdlib.h>
#include <math.h>
#include <cmath>
#include <iostream>
using namespace std;
#define MAX_VOL 20
//多边形的边的数据结构
typedef struct Edge
{
int y_max, y_min; //该有向边的y坐标的最大值与最小值
double x, deltax; //该有向边的x的最小值以及x的变化的量(1/斜率)
struct Edge* next; //指向下一条边的指针
}Edge;
//活动边表表项
typedef struct TableItem
{
int curr_y; //该表项的y坐标值 ymin
Edge *firstNode; //该表项的首个节点,如果没有,NULL
struct TableItem *next; //指向下一个活动边表表项的指针
}TableItem;
//活动边表结构体
typedef struct Table
{
TableItem *itemHeader; //活动边表的表项header
int item_count; //活动边表表项的个数
}ET;
class Point
{
private:
int x1, x2, y1, y2;
public:
Point(int x1, int y1, int x2, int y2)
{
this->x1 = x1;
this->x2 = x2;
this->y1 = y1;
this->y2 = y2;
}
//返回两个点之中的ymax
int YMax()
{
return (y1 > y2 ? y1 : y2);
}
//返回ymin
int YMin()
{
return (y1 < y2 ? y1 : y2);
}
//返回ymin 端点的x 值
int x()
{
return (y1 < y2 ? x1 : x2);
}
//返回直线的斜率,按照传入的参数的顺序
double KOfLine()
{
return ((y2 - y1)*1.0 / (x2 - x1));
}
};
class Solution
{
public:
//根据多边形初始化活动表
//参数 T 活动边表
//参数edges 用于初始化的边数组
//参数 edge_num 用于初始化的边的个数
void Init(ET &T, Edge *edges, int edge_num)
{
//初始化活动边表结构体
T.item_count = 0;
T.itemHeader = NULL;
int ymins[20]; //存储ymin ,决定活动边表的个数以及表项的内容
T.item_count = TableItemCount(edges, edge_num, ymins);
T.itemHeader = (TableItem*)malloc(sizeof(TableItem));
T.itemHeader->curr_y = ymins[0];
T.itemHeader->firstNode = NULL;
T.itemHeader->next = NULL;
TableItem *p = T.itemHeader; //指向头结点
for (int i = 1; i<T.item_count; ++i)
{
//依次创建活动边表的各个表项,并连接在一起
TableItem *e = (TableItem*)malloc(sizeof(TableItem));
e->curr_y = ymins[i];
e->firstNode = NULL;
e->next = NULL;
p->next = e;
p = e;
}
//按照用于初始化的边数组初始化活动边表
p = T.itemHeader;
for (int j = 0; j < edge_num; ++j) {
this->AppendNode(T, edges[j].y_min, edges[j]);
}
//方法结束
////////测试区////////////
//cout << "遍历表项。。。。。" << endl;
//p = T.itemHeader;
//while (p != NULL) {
// cout << "当前表项y : " << p->curr_y << endl;
// Edge *ele = p->firstNode;
// while (ele != NULL) {
// cout << "表项中的边: x = " << ele->x << " y_min = " << ele->y_min << " y_max = " << ele->y_max <<
// "deltax = " << ele->deltax << endl;
// ele = ele->next;
// }
// p = p->next;
//}
////////测试删除结点////////
//p = T.itemHeader;
//int yMax = 0;
//while (yMax < 24) {
// p = T.itemHeader;
// cout << "-------------------------------" << endl;
// cout << "当前y max :" << yMax << endl;
// this->DeleteNode(T, yMax);
// while (p != NULL) {
// cout << "当前表项y : " << p->curr_y << endl;
// Edge *ele = p->firstNode;
// while (ele != NULL) {
// cout << "表项中的边: x = " << ele->x << " y_min = " << ele->y_min << " y_max = " << ele->y_max <<
// "deltax = " << ele->deltax << endl;
// ele = ele->next;
// }
// p = p->next;
// }
// yMax++;
//}
/////////////////////////
}
//用于根据边数组计算需要多少个表项
//表项的个数取决于边的ymin的个数
//返回值 ymin 数组
//返回 item_num 表项的个数
int TableItemCount(Edge *edges, int edge_num, int* ymins)
{
int count = 0;
for (int i = 0; i<edge_num; ++i)
{
if (!isInArray(ymins, edges[i].y_min, count))
{
ymins[count++] = edges[i].y_min;
}
}
//将ymin 升序排序
for (int j = 0; j<count - 1; ++j)
{
for (int k = j + 1; k<count; ++k)
{
if (ymins[k] < ymins[j])
{
int tmp = ymins[k];
ymins[k] = ymins[j];
ymins[j] = tmp;
}
}
}
return count;
}
//判断一个整数是否在整数数组中
bool isInArray(int *array, int e, int array_length)
{
for (int i = 0; i<array_length; ++i)
{
if (array[i] == e)
{
return true;
}
}
return false;
}
//传入edges数组,初始化,返回Edge 结构体数组
//因为需要是封闭图形,所以,在边数组中,最后的点的坐标设为起始点的坐标,传入的edge_num 不变
Edge* InitEdges(int *edges, int edge_num)
{
Edge *newEdges = (Edge*)malloc(sizeof(Edge)*edge_num);
int j = 0;
for (int i = 0; i<edge_num; ++i)
{
Point point(edges[2 * i], edges[2 * i + 1], edges[2 * (i + 1)], edges[2 * (i + 1) + 1]);
Edge *newEdge = (Edge*)malloc(sizeof(Edge));
newEdge->x = (double)point.x();
newEdge->y_max = point.YMax();
newEdge->y_min = point.YMin();
newEdge->deltax = 1.0 / point.KOfLine(); // 斜率分之一
newEdge->next = NULL;
newEdges[j++] = *(newEdge);
}
return newEdges;
}
//删除所有的小于ymax 的节点
//参数 curr_ymax 当前扫描线的y值
void DeleteNode(ET &T, int curr_ymax)
{
TableItem *p = T.itemHeader; //指向表项的指针
while (p != NULL) {
Edge *item = p->firstNode; //指向表项的邻接链表的指针
Edge *itempre = p->firstNode; //指向前一个边结点的指针
while (item != NULL) {
if (item->y_max <= curr_ymax) { //删除该结点
T.item_count--; //当前活动边表中的边的个数-1
//判断该结点是否是该链表的头结点
if (item == p->firstNode) {
p->firstNode = (Edge*)malloc(sizeof(Edge));
p->firstNode = item->next;
free(item); //释放该结点
item = p->firstNode; //重新指向firstnode结点
itempre = p->firstNode;
}
else {
itempre->next = item->next; //修改前一个结点的next的值
free(item); //删除该指针
item = itempre->next; //继续向后遍历
}
}//if (item->y_max < curr_ymax)
else {
itempre = item;
item = item->next;
}
}//while (item != NULL)
p = p->next;
}//while (p != NULL)
}
//将指定y值的节点添加到该表项, 该方法插入的顺序取决于调用该方法传入参数的顺序
//该方法将新节点插入到对应表项的邻接链表的末尾
void AppendNode(ET &T, int place_y, Edge &e)
{
////////测试区//////////
//cout << "In Append , place_y = " << place_y << " e.ymin = " << e.y_min << endl;
//cout << "item count" << T.item_count << endl;
///////////////////////
TableItem *p = T.itemHeader; //指向活动边表的头结点
//将边e插入到对应的表项
//之后在该表项中按照x的大小确定插入的位置
for (int i = 0; i < T.item_count; ++i) {
if (p->curr_y == e.y_min)
break;
p = p->next;
}
//将边插入到该表项的邻接链表中
Edge *egp = p->firstNode; //egp 指向该表项的首个邻接节点
if (egp == NULL) { //如果该表项还没有节点,直接插入
egp = (Edge*)malloc(sizeof(Edge));
*(egp) = e;
egp->next = NULL;
p->firstNode = egp;
}
else {
Edge *pre = egp;
while (egp != NULL) {
pre = egp;
egp = egp->next;
}
Edge *newedge = (Edge*)malloc(sizeof(Edge));
*(newedge) = e;
pre->next = newedge;
newedge->next = NULL;
}
}
//绘图的方法
void Draw(ET T) {
//首先取出ymin 值小于当前扫描线y 的边
//按照顺序配对
int curr_y = 0, curr_edge_num = 0, curr_gy = graphy(curr_y); //图形坐标的扫描线的y坐标
Edge *currEdges = (Edge*)malloc(sizeof(Edge) * 20); //用于存放指针的数组
//将每条边的记录的x 化为图形上的坐标
TableItem *p = T.itemHeader;
while (p != NULL) {
Edge *q = p->firstNode;
while (q != NULL) {
q->x = graphx(q->x);
q = q->next;
}
p = p->next;
}
for (; curr_y < 30; curr_gy--, curr_y = realy(curr_gy)) {
this->DeleteNode(T, curr_y); //删除当前扫描过的边(ymax 小于 curr_y)
currEdges = this->GetCurrEdges(T, curr_y, curr_edge_num); //获取当前与扫描线相交的边
//对获取到的边进行排序、配对
for (int i = 0; i < curr_edge_num - 1; ++i) {
for (int j = i + 1; j < curr_edge_num; ++j) {
if (this->IsRightTo(currEdges[i], currEdges[j])) {
Edge tmp = currEdges[i];
currEdges[i] = currEdges[j];
currEdges[j] = tmp;
}
}
}
////
// getchar();
// cout << "------------------------------" << endl;
setcolor(BLUE);
for (int j = 0; j < curr_edge_num / 2; ++j) {
///
// cout << "line :" << (int)currEdges[2 * j].x << " , " << curr_y << "----->" << (int)currEdges[2 * j + 1].x << " , " << curr_y <<
// " edge_num = " << curr_edge_num << endl;
line((int)currEdges[2 * j].x, curr_gy, (int)currEdges[2 * j + 1].x, curr_gy);
Edge *curr_edge1 = this->GetThisEdge(T, currEdges[2 * j].x, currEdges[2 * j].y_min,
currEdges[2 * j].y_max); //获取当前边的指针,修改x值,保存修改
curr_edge1->x += curr_edge1->deltax;
Edge *curr_edge2 = this->GetThisEdge(T, currEdges[2 * j + 1].x, currEdges[2 * j + 1].y_min,
currEdges[2 * j + 1].y_max);
curr_edge2->x += curr_edge2->deltax;
//line((int)currEdges[2 * j].x, curr_gy, (int)currEdges[2 * j + 1].x, curr_gy); //在两条直线之间划线
//currEdges[2 * j].x += currEdges[2 * j].deltax;
//currEdges[2 * j + 1].x += currEdges[2 * j + 1].deltax; //更新x 的坐标值
}
//////////测试模拟输出划线///////////////
/*cout << "------------------------------------------" << endl;
cout << "curr_y = " << curr_y << endl;
cout << "当前扫描的边的个数 = " << curr_edge_num << endl;
for (int i = 0; i < curr_edge_num / 2; ++i) {
cout << "draw line bwtwen :" << endl;
cout << "直线1 x = " << currEdges[2 * i].x << " ymin = " << currEdges[2 * i].y_min <<
" ymax = " << currEdges[2 * i].y_max << endl;
cout << "直线2 x = " << currEdges[2 * i + 1].x << " ymin = " << currEdges[2 * i + 1].y_min <<
" ymax = " << currEdges[2 * i + 1].y_max << endl;
}*/
////////////////////////////////////
//在1,2 3,4 ... 边之间划线
//TODO 坐标转换以及划线
}
///////测试区/////////////////
//cout << "-------------------------------------" << endl;
//cout << "当前取出的边。。。。。。。。。。" << endl;
//cout << "curr_edge_num = " << curr_edge_num << endl;
//for (int i = 0; i < curr_edge_num; ++i) {
// cout << "x = " << currEdges[i].x << " y_min = " << currEdges[i].y_min << " y_max = " << currEdges[i].y_max << endl;
//}
////////////////////////////////
}
//返回某个边的指针
//可通过此指针修改原结构体中边的x的值
Edge* GetThisEdge(ET T, double x, int y_min, int y_max) {
TableItem *p = T.itemHeader;
while (p != NULL) {
Edge *q = p->firstNode;
while (q != NULL) {
if ((q->x == x) && (q->y_max == y_max) && (q->y_min == y_min)) {
return q;
}
q = q->next;
}
p = p->next;
}
return NULL;
}
//用于坐标转换的函数
double graphx(double x) {
return x * 10 + 100;
}
double realx(double gx) {
return (gx - 100)*1.0 / 10;
}
int graphy(int y) {
return 400 - y * 10;
}
int realy(int gy) {
return (400 - gy) / 10;
}
//绘制坐标系
void DrawCoordinate(int edges[], int edge_num) {
line(100, 100, 100, 400);
line(100, 400, 400, 400);
outtextxy(85, 95, "y↑");
outtextxy(400, 393, "→x");
for (int i = 0; i < 30; ++i) {
if (i % 2 != 0)
continue;
//TODO 字符转换
outtextxy(i * 10 + 100, 390, "|");
char *text = (char*)malloc(sizeof(char) * 10);
itoa(i,text,10);
outtextxy(i * 10 + 100, 410, text);
free(text);
}
for (int j = 0; j < 30; ++j) {
if (j % 2 != 0)
continue;
outtextxy(100, 400 - j * 10, "_");
char *str = (char*)malloc(sizeof(char)*10);
itoa(j,str,10);
outtextxy(100, 400 - j * 10,str);
free(str);
}
//绘制原多边形
for (int k = 0; k < edge_num; ++k) {
setcolor(YELLOW);
int x1 = 0, x2 = 0, y1 = 0, y2 = 0;
x1 = edges[2 * k] * 10 + 100;
y1 = 400 - edges[2 * k + 1] * 10;
x2 = edges[2 * (k + 1)] * 10 + 100;
y2 = 400 - edges[2 * (k + 1) + 1] * 10;
line(x1, y1, x2, y2);
}
}
//获取当前的涉及的扫描线的边
//即取出当前ymin 小于curr_y的边
//通过参数返回取出的边的个数
Edge* GetCurrEdges(ET T, int curr_y, int &edge_num) {
Edge *currEdges = (Edge*)malloc(sizeof(Edge) * 20); //分配最大容量
int i = 0;
TableItem *p = T.itemHeader;
while (p != NULL) {
Edge *q = p->firstNode;
while (q != NULL) {
if (q->y_min <= curr_y) { //等于号很重要,否则会在图形中出现空白区
currEdges[i++] = *q; //将当前边的值取出(不改变原活动表)
}
q = q->next;
}
p = p->next;
}
edge_num = i; //保存取出的边的个数
return currEdges;
}
//判断edge1 是否在edge2 的右边的方法
bool IsRightTo(Edge edge1, Edge edge2) {
if (edge1.x > edge2.x) //如果edge1最低点的x坐标小于edge2的最低点的x的坐标,则edge1在edge2的右边
return true;
else {
if (edge1.x < edge2.x)
return false;
double x_max1 = (edge1.y_max - (edge1.y_min - 1.0 / edge1.deltax*edge1.x))*edge1.deltax;
double x_max2 = (edge2.y_max - (edge2.y_min - 1.0 / edge2.deltax*edge2.x))*edge2.deltax;
if (x_max1 > x_max2)
return true;
}
return false;
}
};
int main()
{
//TODO 测试活动边表初始化
Solution solution;
int edges[] = { 4,18,14,14,26,22,26,10,14,2,4,6,4,18 };
Edge* newEdges = solution.InitEdges(edges, 6);
ET T;
solution.Init(T, newEdges, 6); //初始化活动边表
initgraph(800, 800, SHOWCONSOLE);
solution.DrawCoordinate(edges, 6);
solution.Draw(T);
getchar();
closegraph();
return 0;
}
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
以上是 C/C++实现图形学扫描线填充算法 的全部内容, 来源链接: utcz.com/p/245108.html