opencv3/C++关于移动对象的轮廓的跟踪详解

使用opencv提供的背景去除算法(KNN或高斯混合模型GMM)去除背景,然后将获取的目标二值化后通过筛选目标轮廓获得目标位置。

#include<opencv2/opencv.hpp>

using namespace cv;

//基于移动对象的轮廓的跟踪

int main()

{

Mat frame;

bool flag = true;

VideoCapture capture;

capture.open(0);

if (!capture.isOpened())

{

printf("can not open ......\n");

return -1;

}

namedWindow("mask", WINDOW_AUTOSIZE);

namedWindow("output", WINDOW_AUTOSIZE);

Ptr<BackgroundSubtractor> pKNN = createBackgroundSubtractorKNN();

//Ptr<BackgroundSubtractor> pMOG2 = createBackgroundSubtractorMOG2();

while (capture.read(frame))

{

Mat KNNMask;

std::vector<std::vector<Point>>contours;

pKNN->apply(frame, KNNMask);

//(*pMOG2).apply(frame, mogMask);

threshold(KNNMask, KNNMask, 100, 255, THRESH_BINARY);

Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));

morphologyEx(KNNMask, KNNMask, MORPH_OPEN, kernel, Point(-1,-1));

findContours(KNNMask, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0,0));

for (int i = 0; i < contours.size(); i++)

{

//轮廓面积

double area = contourArea(contours[i]);

//轮廓外接矩阵

Rect rect = boundingRect(contours[i]);

if (area < 500 || rect.width < 50 || rect.height < 50) continue;

rectangle(frame, rect, Scalar(0,255,255),2);

putText(frame, "Target", Point(rect.x, rect.y), CV_FONT_NORMAL, FONT_HERSHEY_PLAIN, Scalar(0,255,0),2,8);

}

imshow("mask",KNNMask);

imshow("output",frame);

waitKey(1);

}

return 0;

}

以上这篇opencv3/C++关于移动对象的轮廓的跟踪详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 opencv3/C++关于移动对象的轮廓的跟踪详解 的全部内容, 来源链接: utcz.com/p/244660.html

回到顶部