libsvm支持向量机回归示例
libsvm支持向量机算法包的基本使用,此处演示的是支持向量回归机
import libsvm.svm;import libsvm.svm_model;import libsvm.svm_node;import libsvm.svm_parameter;import libsvm.svm_problem;
public class SVM { public static void main(String[] args) { // 定义训练集点a{10.0, 10.0} 和 点b{-10.0, -10.0},对应lable为{1.0, -1.0} List<Double> label = new ArrayList<Double>(); List<svm_node[]> nodeSet = new ArrayList<svm_node[]>(); getData(nodeSet, label, "file/train.txt"); int dataRange=nodeSet.get(0).length; svm_node[][] datas = new svm_node[nodeSet.size()][dataRange]; // 训练集的向量表 for (int i = 0; i < datas.length; i++) { for (int j = 0; j < dataRange; j++) { datas[i][j] = nodeSet.get(i)[j]; } } double[] lables = new double[label.size()]; // a,b 对应的lable for (int i = 0; i < lables.length; i++) { lables[i] = label.get(i); }
// 定义svm_problem对象 svm_problem problem = new svm_problem(); problem.l = nodeSet.size(); // 向量个数 problem.x = datas; // 训练集向量表 problem.y = lables; // 对应的lable数组
// 定义svm_parameter对象 svm_parameter param = new svm_parameter(); param.svm_type = svm_parameter.EPSILON_SVR; param.kernel_type = svm_parameter.LINEAR; param.cache_size = 100; param.eps = 0.00001; param.C = 1.9; // 训练SVM分类模型 System.out.println(svm.svm_check_parameter(problem, param)); // 如果参数没有问题,则svm.svm_check_parameter()函数返回null,否则返回error描述。 svm_model model = svm.svm_train(problem, param); // svm.svm_train()训练出SVM分类模型
// 获取测试数据 List<Double> testlabel = new ArrayList<Double>(); List<svm_node[]> testnodeSet = new ArrayList<svm_node[]>(); getData(testnodeSet, testlabel, "file/test.txt");
svm_node[][] testdatas = new svm_node[testnodeSet.size()][dataRange]; // 训练集的向量表 for (int i = 0; i < testdatas.length; i++) { for (int j = 0; j < dataRange; j++) { testdatas[i][j] = testnodeSet.get(i)[j]; } } double[] testlables = new double[testlabel.size()]; // a,b 对应的lable for (int i = 0; i < testlables.length; i++) { testlables[i] = testlabel.get(i); }
// 预测测试数据的lable double err = 0.0; for (int i = 0; i < testdatas.length; i++) { double truevalue = testlables[i]; System.out.print(truevalue + " "); double predictValue = svm.svm_predict(model, testdatas[i]); System.out.println(predictValue); err += Math.abs(predictValue - truevalue); } System.out.println("err=" + err / datas.length); }
public static void getData(List<svm_node[]> nodeSet, List<Double> label, String filename) { try {
FileReader fr = new FileReader(new File(filename)); BufferedReader br = new BufferedReader(fr); String line = null; while ((line = br.readLine()) != null) { String[] datas = line.split(","); svm_node[] vector = new svm_node[datas.length - 1]; for (int i = 0; i < datas.length - 1; i++) { svm_node node = new svm_node(); node.index = i + 1; node.value = Double.parseDouble(datas[i]); vector[i] = node; } nodeSet.add(vector); double lablevalue = Double.parseDouble(datas[datas.length - 1]); label.add(lablevalue); } } catch (Exception e) { e.printStackTrace(); }
}}
训练数据,最后一列为目标值
测试数据
以上是 libsvm支持向量机回归示例 的全部内容, 来源链接: utcz.com/p/207187.html