Flutter事件分发源码剖析

概述

不管是原生Android、iOS还是JavaScript,只要是涉及手势交互都会有事件的分发处理。和原生Android、iOS的事件分发的步骤和原理一样,Flutter的事件分发总体也由手势触发、拦截和响应等几个部分构成。Flutter所有事件源头是 hooks.dart文件的_dispatchPointerDataPacket函数,通过拦截屏幕的点击、滑动等各种事件,进而分发给原生代码进行响应(ps:Android事件分发)。

如果你看过了解原生Android、iOS的事件分发机制,那么Flutter的事件分发,其实是在Android和iOS上加了壳,即Flutter的事件分发是在原生Android、iOS的的事件分发上进行包装的(Android - C - Dart,iOS- C -Dart)。其中,C是Flutter的底层engine,负责Flutter上层和原生Android、iOS系统的交互。

事件分发到Dart的入口类是GestureBinding类,此类位于gestures/binding.dart文件中,与手势识别相关的都位于gestures包中,如下图所示。
在这里插入图片描述

  • converter.dart将物理坐标_dispatchPointerDataPacket收到的物理数据PointerDataPacket转换成PointerEvent, 类似于安卓在ViewRootImpl.java将InputEventReceiver收到的InputEvent转换为MotionEvent。
  • recognizer.dart的GestureRecognizer是所有手势识别的基类。
  • rendering/binding.dart的RendererBinding类关联了render树和Flutter引擎,等价于安卓的Surface。
  • view.dart的RenderView是render树的根节点,等价于安卓的DecorView。

Flutter的事件分发基类是GestureBinding,打开GestureBinding类,它的成员函数包括dispatchEvent、handleEvent和hitTes等,主要是从事件队列里按照先入先出方式处理PointerEvent,源码如下。

mixin GestureBinding on BindingBase implements HitTestable, HitTestDispatcher, HitTestTarget {

@override

void initInstances() {

super.initInstances();

_instance = this;

ui.window.onPointerDataPacket = _handlePointerDataPacket;

}

其中,WidgetsFlutterBinding.ensureInitialized()函数的作用就是初始化各个binging。

Flutter 事件分发

和Android、iOS类似,Flutter的事件分发的入口在runApp函数,相关的代码如下。

void runApp(Widget app) {

WidgetsFlutterBinding.ensureInitialized()

..attachRootWidget(app)

..scheduleWarmUpFrame();

}

class WidgetsFlutterBinding extends BindingBase with GestureBinding, ServicesBinding, SchedulerBinding, PaintingBinding, SemanticsBinding, RendererBinding, WidgetsBinding {

static WidgetsBinding ensureInitialized() {

if (WidgetsBinding.instance == null)

WidgetsFlutterBinding();

return WidgetsBinding.instance;

}

}

void attachRootWidget(Widget rootWidget) {

_renderViewElement = RenderObjectToWidgetAdapter<RenderBox>(

container: renderView,

debugShortDescription: '[root]',

child: rootWidget

).attachToRenderTree(buildOwner, renderViewElement);

}

WidgetsFlutterBinding.ensureInitialized()函数的作用是初始化各个binging。事实上,Flutter 中的 WidgetsFlutterBinding的 Binding可以分为GestureBinding、ServicesBinding、SchedulerBinding、PaintingBinding、SemanticsBinding、RendererBinding、WidgetsBinding 等 7 种 Binding,它们都有自己在功能上的划分。其中,GestureBinding就是处理事件分发的,attachRootWidget就是设置根节点, 可以看到真正的根节点是renderview, 也是Flutter事件分发的起点。

下面我们来重点看一下GestureBinding类。

GestureBinding

和Android事件处理的流程一样,首先,系统会拦截用户的事件,然后在使用GestureBinding的_handlePointerEvent进行事件命中处理。原生事件到达Dart层之后调用的第一个方法是_handlePointerDataPacket,它的源码如下。

 void _handlePointerDataPacket(ui.PointerDataPacket packet) {

_pendingPointerEvents.addAll(PointerEventConverter.expand(packet.data, window.devicePixelRatio));

if (!locked)

_flushPointerEventQueue();

}

_handlePointerDataPacket方法有一个PointerEventConverter类,作用是将原生传来的手势数据全部转化为Dart对应的对象保存数据,然后保存到集合中进行储存。接下来来我们看一下_flushPointerEventQueue方法,源码如下。

void _flushPointerEventQueue() {

assert(!locked);

while (_pendingPointerEvents.isNotEmpty)

_handlePointerEvent(_pendingPointerEvents.removeFirst());

}

_flushPointerEventQueue方法的作用就是循环处理每个手指的的事件,并进行处理,源码如下。

void _handlePointerEvent(PointerEvent event) {

assert(!locked);

HitTestResult hitTestResult;

//如果是手指按下的话

if (event is PointerDownEvent || event is PointerSignalEvent) {

assert(!_hitTests.containsKey(event.pointer));

hitTestResult = HitTestResult();

//得到碰撞的控件组

hitTest(hitTestResult, event.position);

if (event is PointerDownEvent) {

_hitTests[event.pointer] = hitTestResult;

}

assert(() {

if (debugPrintHitTestResults)

debugPrint('$event: $hitTestResult');

return true;

}());

}

//手指抬起

else if (event is PointerUpEvent || event is PointerCancelEvent) {

hitTestResult = _hitTests.remove(event.pointer);

}

//缓存点击的事件,接下来发生滑动的时候直接复用原来的碰撞控件组

else if (event.down) {

// Because events that occur with the pointer down (like

// PointerMoveEvents) should be dispatched to the same place that their

// initial PointerDownEvent was, we want to re-use the path we found when

// the pointer went down, rather than do hit detection each time we get

// such an event.

hitTestResult = _hitTests[event.pointer];

}

assert(() {

if (debugPrintMouseHoverEvents && event is PointerHoverEvent)

debugPrint('$event');

return true;

}());

if (hitTestResult != null ||

event is PointerHoverEvent ||

event is PointerAddedEvent ||

event is PointerRemovedEvent) {

dispatchEvent(event, hitTestResult);

}

}

这个方法的主要目的就是得到HitTestResult,就是根据按下的坐标位置找出view树中哪些控件在点击的范围内,手指在移动和抬起的时候都复用当前的事件,区别在于不同的手指有不同的索引值。接下来,看一下用户的触摸行为,hitTest首先会进入RendererBinding处理,打开RendererBinding类的hitTest方法,如下所示。

RenderView get renderView => _pipelineOwner.rootNode as RenderView;

void hitTest(HitTestResult result, Offset position) {

assert(renderView != null);

renderView.hitTest(result, position: position);

super.hitTest(result, position);

}

其中,RenderView可以理解为Flutter 视图树的根View,在Flutter中也叫做Widget ,一个Widget 对应一个Element 。在Flutter中,渲染会三棵树,即Widget 树、Element 树和RenderObject 树。我们进行页面布局分析时,就可以看到它们,如下所示。
在这里插入图片描述
关于Widget 树、Element 树和RenderObject 树,可以查看Flutter渲染之Widget、Element 和 RenderObject的介绍。

然后,我们打开renderView.hitTest方法,对应的代码如下所示。

 bool hitTest(HitTestResult result, { Offset position }) {

if (child != null)

child.hitTest(BoxHitTestResult.wrap(result), position: position);

result.add(HitTestEntry(this));

return true;

}

可以看到,根视图是先从子view开始放进集合,放完子view再放自己,这和前端JS点击事件冒泡的原理是一样的。并且,只有满足条件子视图才会放到 入RenderBox 的这个方法中。

 bool hitTest(BoxHitTestResult result, { @required Offset position }) {

//所点击的范围是否在当前控件的范围内

if (_size.contains(position)) {

//先添加孩子中的事件后选人

if (hitTestChildren(result, position: position) || hitTestSelf(position)) {

result.add(BoxHitTestEntry(this, position));

return true;

}

}

return false;

}

接下来,看一下Stack小部件hitTestChildren的实现,源码如下。

  @override

bool hitTestChildren(BoxHitTestResult result, { Offset position }) {

return defaultHitTestChildren(result, position: position);

}

bool defaultHitTestChildren(BoxHitTestResult result, { Offset position }) {

// the x, y parameters have the top left of the node's box as the origin

ChildType child = lastChild;

while (child != null) {

final ParentDataType childParentData = child.parentData;

final bool isHit = result.addWithPaintOffset(

offset: childParentData.offset,

position: position,

hitTest: (BoxHitTestResult result, Offset transformed) {

assert(transformed == position - childParentData.offset);

return child.hitTest(result, position: transformed);

},

);

if (isHit)

return true;

child = childParentData.previousSibling;

}

return false;

}

这个方法的作用就是判断包含Padding的视图是否在点击范围内,如果命中,则阻止其他事件继续冒泡。看到此处,我们大体可以看出,Flutter的事件处理主要是判断点击的坐标知否在控件范围内,如果在范围内直接响应,如果不在继续向上冒泡,并且事件是从叶子开始的,也即Web中的事件冒泡。

完成命中处理后,接下来回到事件处理的主流程,即事件派发dispatchEvent,代码位于gestrues/binding里面,源码如下。

 void dispatchEvent(PointerEvent event, HitTestResult hitTestResult) {

assert(!locked);

// No hit test information implies that this is a hover or pointer

// add/remove event.这种情况出在指针悬停屏幕上方,微微接触或不接触,是手机敏感而言

if (hitTestResult == null) {

assert(event is PointerHoverEvent || event is PointerAddedEvent || event is PointerRemovedEvent);

try {

pointerRouter.route(event);

} catch (exception, stack) {

FlutterError.reportError(FlutterErrorDetailsForPointerEventDispatcher(

exception: exception,

stack: stack,

library: 'gesture library',

context: ErrorDescription('while dispatching a non-hit-tested pointer event'),

event: event,

hitTestEntry: null,

informationCollector: () sync* {

yield DiagnosticsProperty<PointerEvent>('Event', event, style: DiagnosticsTreeStyle.errorProperty);

},

));

}

return;

}

for (HitTestEntry entry in hitTestResult.path) {

try {

entry.target.handleEvent(event.transformed(entry.transform), entry);

} catch (exception, stack) {

FlutterError.reportError(FlutterErrorDetailsForPointerEventDispatcher(

exception: exception,

stack: stack,

library: 'gesture library',

context: ErrorDescription('while dispatching a pointer event'),

event: event,

hitTestEntry: entry,

informationCollector: () sync* {

yield DiagnosticsProperty<PointerEvent>('Event', event, style: DiagnosticsTreeStyle.errorProperty);

yield DiagnosticsProperty<HitTestTarget>('Target', entry.target, style: DiagnosticsTreeStyle.errorProperty);

},

));

}

}

}

此方法最根本的作用是循环事件分发,并以冒泡的形式从底部到分发事件,当事件被命中时,即由当前子节点处理事件,这和Android的事件分发的逻辑是一样的。下面以GestureDetector和Listener来举例事件分发的不同。如果用Listener的话,Listener的组件最终对应的RenderObject是RenderPointerListener,它的监测当前点击是否命中的方法如下。

bool hitTest(BoxHitTestResult result, { Offset position }) {

bool hitTarget = false;

if (size.contains(position)) {

hitTarget = hitTestChildren(result, position: position) || hitTestSelf(position);

if (hitTarget || behavior == HitTestBehavior.translucent)

result.add(BoxHitTestEntry(this, position));

}

return hitTarget;

}

@override

bool hitTestSelf(Offset position) => behavior == HitTestBehavior.opaque;

使用Listener嵌套的子组件默认情况下是命中的,很多子部件例如TextImage等,它们的hitTestSelf返回True,假如我们为Text嵌套了Listener,那么事件分发的时候设计的代码如下所示。

void handleEvent(PointerEvent event, HitTestEntry entry) {

assert(debugHandleEvent(event, entry));

if (onPointerDown != null && event is PointerDownEvent)

return onPointerDown(event);

if (onPointerMove != null && event is PointerMoveEvent)

return onPointerMove(event);

if (onPointerUp != null && event is PointerUpEvent)

return onPointerUp(event);

if (onPointerCancel != null && event is PointerCancelEvent)

return onPointerCancel(event);

if (onPointerSignal != null && event is PointerSignalEvent)

return onPointerSignal(event);

}

如果使用的是GestureDetector的话,build方法会为我们添加很多处理手势的方法类,如TapGestureRecognizer,通过处理手势识别后,最终返回的是RawGestureDetector,涉及的代码如下。

 final Map<Type, GestureRecognizerFactory> gestures = <Type, GestureRecognizerFactory>{};

if (

onTapDown != null ||

onTapUp != null ||

onTap != null ||

onTapCancel != null ||

onSecondaryTapDown != null ||

onSecondaryTapUp != null ||

onSecondaryTapCancel != null

) {

gestures[TapGestureRecognizer] = GestureRecognizerFactoryWithHandlers<TapGestureRecognizer>(

() => TapGestureRecognizer(debugOwner: this),

(TapGestureRecognizer instance) {

instance

..onTapDown = onTapDown

..onTapUp = onTapUp

..onTap = onTap

..onTapCancel = onTapCancel

..onSecondaryTapDown = onSecondaryTapDown

..onSecondaryTapUp = onSecondaryTapUp

..onSecondaryTapCancel = onSecondaryTapCancel;

},

);

}

if (onDoubleTap != null) {

gestures[DoubleTapGestureRecognizer] = GestureRecognizerFactoryWithHandlers<DoubleTapGestureRecognizer>(

() => DoubleTapGestureRecognizer(debugOwner: this),

(DoubleTapGestureRecognizer instance) {

instance

..onDoubleTap = onDoubleTap;

},

);

}

if (onLongPress != null ||

onLongPressUp != null ||

onLongPressStart != null ||

onLongPressMoveUpdate != null ||

onLongPressEnd != null) {

gestures[LongPressGestureRecognizer] = GestureRecognizerFactoryWithHandlers<LongPressGestureRecognizer>(

() => LongPressGestureRecognizer(debugOwner: this),

(LongPressGestureRecognizer instance) {

instance

..onLongPress = onLongPress

..onLongPressStart = onLongPressStart

..onLongPressMoveUpdate = onLongPressMoveUpdate

..onLongPressEnd =onLongPressEnd

..onLongPressUp = onLongPressUp;

},

);

}

if (onVerticalDragDown != null ||

onVerticalDragStart != null ||

onVerticalDragUpdate != null ||

onVerticalDragEnd != null ||

onVerticalDragCancel != null) {

gestures[VerticalDragGestureRecognizer] = GestureRecognizerFactoryWithHandlers<VerticalDragGestureRecognizer>(

() => VerticalDragGestureRecognizer(debugOwner: this),

(VerticalDragGestureRecognizer instance) {

instance

..onDown = onVerticalDragDown

..onStart = onVerticalDragStart

..onUpdate = onVerticalDragUpdate

..onEnd = onVerticalDragEnd

..onCancel = onVerticalDragCancel

..dragStartBehavior = dragStartBehavior;

},

);

}

if (onHorizontalDragDown != null ||

onHorizontalDragStart != null ||

onHorizontalDragUpdate != null ||

onHorizontalDragEnd != null ||

onHorizontalDragCancel != null) {

gestures[HorizontalDragGestureRecognizer] = GestureRecognizerFactoryWithHandlers<HorizontalDragGestureRecognizer>(

() => HorizontalDragGestureRecognizer(debugOwner: this),

(HorizontalDragGestureRecognizer instance) {

instance

..onDown = onHorizontalDragDown

..onStart = onHorizontalDragStart

..onUpdate = onHorizontalDragUpdate

..onEnd = onHorizontalDragEnd

..onCancel = onHorizontalDragCancel

..dragStartBehavior = dragStartBehavior;

},

);

}

if (onPanDown != null ||

onPanStart != null ||

onPanUpdate != null ||

onPanEnd != null ||

onPanCancel != null) {

gestures[PanGestureRecognizer] = GestureRecognizerFactoryWithHandlers<PanGestureRecognizer>(

() => PanGestureRecognizer(debugOwner: this),

(PanGestureRecognizer instance) {

instance

..onDown = onPanDown

..onStart = onPanStart

..onUpdate = onPanUpdate

..onEnd = onPanEnd

..onCancel = onPanCancel

..dragStartBehavior = dragStartBehavior;

},

);

}

if (onScaleStart != null || onScaleUpdate != null || onScaleEnd != null) {

gestures[ScaleGestureRecognizer] = GestureRecognizerFactoryWithHandlers<ScaleGestureRecognizer>(

() => ScaleGestureRecognizer(debugOwner: this),

(ScaleGestureRecognizer instance) {

instance

..onStart = onScaleStart

..onUpdate = onScaleUpdate

..onEnd = onScaleEnd;

},

);

}

if (onForcePressStart != null ||

onForcePressPeak != null ||

onForcePressUpdate != null ||

onForcePressEnd != null) {

gestures[ForcePressGestureRecognizer] = GestureRecognizerFactoryWithHandlers<ForcePressGestureRecognizer>(

() => ForcePressGestureRecognizer(debugOwner: this),

(ForcePressGestureRecognizer instance) {

instance

..onStart = onForcePressStart

..onPeak = onForcePressPeak

..onUpdate = onForcePressUpdate

..onEnd = onForcePressEnd;

},

);

}

return RawGestureDetector(

gestures: gestures,

behavior: behavior,

excludeFromSemantics: excludeFromSemantics,

child: child,

);

并且,RawGestureDetector默认使用的也是Listener,它注册了手指按下的方法,分发的时候Down事件是sdk默认处理的。

 void _handlePointerDown(PointerDownEvent event) {

assert(_recognizers != null);

for (GestureRecognizer recognizer in _recognizers.values)

recognizer.addPointer(event);

}

此方法会向Binding路由器中注册那些需要处理的事件,假如我们只声明了点击事件,那么集合中负责添加的GestureRecognizer的实现类就是TapGestureRecognizer,接下来我们看一下addPointer方法。

 void addPointer(PointerDownEvent event) {

_pointerToKind[event.pointer] = event.kind;

if (isPointerAllowed(event)) {

addAllowedPointer(event);

} else {

handleNonAllowedPointer(event);

}

}

bool isPointerAllowed(PointerDownEvent event) {

switch (event.buttons) {

case kPrimaryButton:

if (onTapDown == null &&

onTap == null &&

onTapUp == null &&

onTapCancel == null)

return false;

break;

case kSecondaryButton:

if (onSecondaryTapDown == null &&

onSecondaryTapUp == null &&

onSecondaryTapCancel == null)

return false;

break;

default:

return false;

}

return super.isPointerAllowed(event);

}

isPointerAllowed方法的作用就是用来判定当前的手势,默认返回false,如果事件比命中,接下来执行addAllowedPointer方法,如下所示。

void addAllowedPointer(PointerDownEvent event) {

startTrackingPointer(event.pointer, event.transform);

if (state == GestureRecognizerState.ready) {

state = GestureRecognizerState.possible;

primaryPointer = event.pointer;

initialPosition = OffsetPair(local: event.localPosition, global: event.position);

if (deadline != null)

_timer = Timer(deadline, () => didExceedDeadlineWithEvent(event));

}

void startTrackingPointer(int pointer, [Matrix4 transform]) {

GestureBinding.instance.pointerRouter.addRoute(pointer, handleEvent, transform);

_trackedPointers.add(pointer);

assert(!_entries.containsValue(pointer));

_entries[pointer] = _addPointerToArena(pointer);

}

这两个方法的主要作用就是用来将当前的handleEvent方法添加到GestureBinding路由器里面去,而_addPointerToArena是就是添加处理事件的具体逻辑。接下来,我们来看一下GestureBinding里面的handleEvent函数的事件分发逻辑。

void handleEvent(PointerEvent event, HitTestEntry entry) {

pointerRouter.route(event);

if (event is PointerDownEvent) {

gestureArena.close(event.pointer);

} else if (event is PointerUpEvent) {

gestureArena.sweep(event.pointer);

} else if (event is PointerSignalEvent) {

pointerSignalResolver.resolve(event);

}

}

}

如果手指按下的时候GestureRecognizer的handleEvent方法没有决策出到底哪个控件会成为事件的处理者,那么会执行 gestureArena.close()方法,如下所示。

void close(int pointer) {

final _GestureArena state = _arenas[pointer];

if (state == null)

return; // This arena either never existed or has been resolved.

state.isOpen = false;

assert(_debugLogDiagnostic(pointer, 'Closing', state));

_tryToResolveArena(pointer, state);

}

如果未决策出哪个控件处理事件的时候,state.isOpen此时被标记为false,也即是关闭手势的处理。

void _tryToResolveArena(int pointer, _GestureArena state) {

assert(_arenas[pointer] == state);

assert(!state.isOpen);

if (state.members.length == 1) {

scheduleMicrotask(() => _resolveByDefault(pointer, state));

} else if

(state.members.isEmpty) {

_arenas.remove(pointer);

assert(_debugLogDiagnostic(pointer, 'Arena empty.'));

}

else if (state.eagerWinner != null) {

assert(_debugLogDiagnostic(pointer, 'Eager winner: ${state.eagerWinner}'));

_resolveInFavorOf(pointer, state, state.eagerWinner);

}

}

如果手势竞争中,有竞争胜出者,则由胜出者执行事件处理,如下所示。

void _resolveInFavorOf(int pointer, _GestureArena state, GestureArenaMember member) {

assert(state == _arenas[pointer]);

assert(state != null);

assert(state.eagerWinner == null || state.eagerWinner == member);

assert(!state.isOpen);

_arenas.remove(pointer);

//其他的命中全部拒绝

for (GestureArenaMember rejectedMember in state.members) {

if (rejectedMember != member)

rejectedMember.rejectGesture(pointer);

}

member.acceptGesture(pointer);

}

如果事件处理中没有具体的事件处理对象,将会默认采用最底层的的叶子节点控件作为事件处理者,也就是说最内层的那个控件将消耗事件。也就是说,如果使用GestureRecognizer来识别手势事件时,最终事件会被最内层的GestureRecognizer消耗,这和Android单个控件消耗事件差不多,所以嵌套滚动总是先滚动内层,先被内层消耗,然后再执行外层。

参考: Flutter 事件分发

以上是 Flutter事件分发源码剖析 的全部内容, 来源链接: utcz.com/a/47646.html

回到顶部