Trace-Event解决Linux系统不能深度睡眠问题

导读最近遇到一个问题,系统不能睡眠到c7s, 只能睡眠到c3. (c-state不能到c7s, cpu的c-state, c0是运行态,其它状态都是idle态,睡眠的越深,c-state的值越大)。

使用Trace-Event解决系统不能深度睡眠

发现问题后,我的第一感觉是不是系统很忙导致, 使用pert top看一下耗cpu的进程和热点函数:

    perf top -E 100 --stdio > perf-top.txt

19.85% perf [.] __symbols__insert

7.68% perf [.] rb_next

4.60% libc-2.26.so [.] __strcmp_sse2_unaligned

4.20% libelf-0.168.so [.] gelf_getsym

3.92% perf [.] dso__load_sym

3.86% libc-2.26.so [.] _int_malloc

3.60% libc-2.26.so [.] __libc_calloc

3.30% libc-2.26.so [.] vfprintf

2.95% perf [.] rb_insert_color

2.61% [kernel] [k] prepare_exit_to_usermode

2.51% perf [.] machine__map_x86_64_entry_trampolines

2.31% perf [.] symbol__new

2.22% [kernel] [k] do_syscall_64

2.11% libc-2.26.so [.] __strlen_avx2

发现系统中只有perf工具本身比较耗cpu :(

然后就想到是不是系统中某个进程搞的鬼,不让cpu睡眠到c7s. 这时候使用trace event监控一下系统中sched_switch事件. 使用trace-cmd工具监控所有cpu上的sched_switch(进程切换)事件30秒:

    #trace-cmd record -e sched:sched_switch -M -1 sleep 30

CPU0 data recorded at offset=0x63e000

102400 bytes in size

CPU1 data recorded at offset=0x657000

8192 bytes in size

CPU2 data recorded at offset=0x659000

20480 bytes in size

CPU3 data recorded at offset=0x65e000

20480 bytes in size

使用trace-cmd report 查看一下监控结果,但是查看这样的原始数据不够直观,没有某个进程被切换到的统计信息:

    #trace-cmd report

cpus=4

trace-cmd-19794 [001] 225127.464466: sched_switch: trace-cmd:19794 [120] S ==> swapper/1:0 [120]

trace-cmd-19795 [003] 225127.464601: sched_switch: trace-cmd:19795 [120] S ==> swapper/3:0 [120]

sleep-19796 [002] 225127.464792: sched_switch: sleep:19796 [120] S ==> swapper/2:0 [120]

-0 [003] 225127.471948: sched_switch: swapper/3:0 [120] R ==> rcu_sched:11 [120]

rcu_sched-11 [003] 225127.471950: sched_switch: rcu_sched:11 [120] W ==> swapper/3:0 [120]

-0 [003] 225127.479959: sched_switch: swapper/3:0 [120] R ==> rcu_sched:11 [120]

rcu_sched-11 [003] 225127.479960: sched_switch: rcu_sched:11 [120] W ==> swapper/3:0 [120]

-0 [003] 225127.487959: sched_switch: swapper/3:0 [120] R ==> rcu_sched:11 [120]

rcu_sched-11 [003] 225127.487961: sched_switch: rcu_sched:11 [120] W ==> swapper/3:0 [120]

-0 [002] 225127.491959: sched_switch: swapper/2:0 [120] R ==> kworker/2:2:19735 [120]

kworker/2:2-19735 [002] 225127.491972: sched_switch: kworker/2:2:19735 [120] W ==> swapper/2:0 [120]

trace-cmd report 的结果使用正则表达式过滤一下,然后排序统计:

    trace-cmd report | grep -o '==> [^ ]\+:\?' | sort | uniq -c

3 ==> irqbalance:1034

3 ==> khugepaged:43

20 ==> ksoftirqd/0:10

1 ==> ksoftirqd/1:18

18 ==> ksoftirqd/3:30

1 ==> kthreadd:19798

1 ==> kthreadd:2

4 ==> kworker/0:0:19785

1 ==> kworker/0:1:19736

5 ==> kworker/0:1:19798

5 ==> kworker/0:1H:364

53 ==> kworker/0:2:19614

19 ==> kworker/1:1:7665

30 ==> tuned:19498

...

发现可疑线程tuned,30秒内被切换到运行了30次,其它线程都是常规线程。

此时查看一下系统中是否开启了tuned服务:

使用Trace-Event解决系统不能深度睡眠

果真是系统开启了tuned服务,然后拉起了名字为tuned的线程.

查看一下tuned服务的配置文件:

    localhost:/home/jeff # tuned-adm active

Current active profile: sap-hana

localhost:/home/jeff # cat /usr/lib/tuned/sap-hana/tuned.conf

[main]

summary=Optimize for SAP NetWeaver, SAP HANA and HANA based products

[cpu]

force_latency = 70

发现关于cpu这一项,设置强制延迟时间为70秒 force_latency = 70 ,这个是为了优化HANA数据库。

到底force_latency怎样起作用,经过一顿搜索,发现这个值是被设置进了/dev/cpu_dma_latency

使用lsof /dev/cpu_dma_latency, 发现tuned线程确实是在操作这个文件

    #lsof /dev/cpu_dma_latency

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

tuned 18734 root 9w CHR 10,60 0t0 11400 /dev/cpu_dma_latency

而且Linux内核文档也说明了/dev/cpu_dma_latency文件,如果要对它进行写操作,要open之后写数据之后不close,如果释放掉了文件描述符它就又会恢复到默认值,这也印证了上面lsof /dev/cpu_dma_latency是有输出结果的.

    https://github.com/torvalds/linux/blob/v5.8/Documentation/trace/coresight/coresight-cpu-debug.rst

As specified in the PM QoS documentation the requested parameter

will stay in effect until the file descriptor is released. For example:

# exec 3 /dev/cpu_dma_latency; echo 0 >&3

...

Do some work...

...

# exec 3-

查看一下/dev/cpu_dma_latency文件的内容,确实是70,也就是(force_latency = 70)

    localhost:/home/jeff # cat /dev/cpu_dma_latency | hexdump -Cv

00000000 46 00 00 00 |F...|

localhost:/home/jeff # echo $((0x46))

70

此时查看一下系统中cpu各个睡眠态的描述和延迟时间值:

    # cd /sys/devices/system/cpu/cpu0/cpuidle/

# for state in * ; do

echo -e \

"STATE: $state\t\

DESC: $(cat $state/desc)\t\

NAME: $(cat $state/name)\t\

LATENCY: $(cat $state/latency)\t\

RESIDENCY: $(cat $state/residency)"

done

发现C3态的延迟时间是33微秒,C4的延时时间是133微秒,所以(force_latency = 70) ,

系统就只能睡眠到C3了 .(延迟时间就是从此睡眠态唤醒到运行态的时间)

    STATE: state0    DESC: CPUIDLE CORE POLL IDLE    NAME: POLL  LATENCY: 0  RESIDENCY: 0

STATE: state1 DESC: MWAIT 0x00 NAME: C1 LATENCY: 2 RESIDENCY: 2

STATE: state2 DESC: MWAIT 0x01 NAME: C1E LATENCY: 10 RESIDENCY: 20

STATE: state3 DESC: MWAIT 0x10 NAME: C3 LATENCY: 33 RESIDENCY: 100

STATE: state4 DESC: MWAIT 0x20 NAME: C6 LATENCY: 133 RESIDENCY: 400

STATE: state5 DESC: MWAIT 0x32 NAME: C7s LATENCY: 166 RESIDENCY: 500

此时关闭tuned 服务, 再查看一下 /dev/cpu_dma_latency的值,变成了默认的2000秒

    localhost:/home/jeff # tuned-adm off

localhost:/home/jeff # cat /dev/cpu_dma_latency | hexdump -Cv

00000000 00 94 35 77 |..5w|

localhost:/home/jeff # echo $((0x77359400))

2000000000

然后验证一下,此时系统可以睡眠到C7s了,此问题得到解决 :)

解决此问题,主要用到了Linux内核本身提供的trace-event.

所以任何一个功能都不能小看,内核就是这样,一般看上去很无聊的功能,被一些工程师用很认真的态度打磨出来之后,潜力还是非常大的:)

以上是 Trace-Event解决Linux系统不能深度睡眠问题 的全部内容, 来源链接: utcz.com/a/121138.html

回到顶部