Python如何使用Spacy进行分词

美女程序员鼓励师

说明

1、Spacy语言模型包含一些强大的文本分析功能,如词性标记和命名实体识别。

2、导入spacy相关模块后,需要加载中文处理包。然后读小说数据,nlp处理天龙八部小说,包括分词、定量、词性标注、语法分析、命名实体识别,用符号/分隔小说。最后,通过is_stop函数判断单词中的单词是否为无效单词,删除无效单词后,将结果写入txt文件。

实例

import spacy

import pandas as pd

import time

from spacy.lang.zh.stop_words import STOP_WORDS

 

nlp = spacy.load('zh_core_web_sm')

 

def fenci_stopwords(data,newdata1):

    fenci = []

    qc_stopwords =[]

 

    article = pd.read_table(data,encoding="utf-8")

    start1 = time.time()

    with open(newdata1,'w',encoding='utf-8') as f1:

        for i in article["天龙八部"]:#分词

            doc = nlp(i)

            result1 = '/'.join([t.text for t in doc])

            fenci.append(result1)

 

  for j in fenci:#去除停用词   

            words = nlp.vocab[j]    

            if words.is_stop == False:        

                qc_stopwords.append(j)

                result2 = '/'.join(qc_stopwords)

                f1.write(result2)

    end1 = time.time()

    return end1-start1

以上就是Python使用Spacy进行分词的方法,希望对大家有所帮助。更多Python学习指路:python基础教程

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

以上是 Python如何使用Spacy进行分词 的全部内容, 来源链接: utcz.com/z/544493.html

回到顶部