递归查询两种写法的性能差异

database

对于递归查询" title="递归查询">递归查询,KINGBASE用户可以选择使用connect by ,或者使用 with recursive 。下面,我们以例子来看下二者的差别。

一、构造数据

create table test_recursive(id integer,pid integer,name varchar,description text);

insert into test_recursive(id,name,description) select generate_series(1,100000),"a"||generate_series(1,100000),repeat("desc",500);

update test_recursive set pid=1 where id between 2 and 10;

update test_recursive set pid=mod(id,9)+2 where id between 11 and 100;

update test_recursive set pid=mod(id,90)+11 where id between 101 and 1000;

update test_recursive set pid=mod(id,900)+101 where id between 1001 and 10000;

update test_recursive set pid=mod(id,9000)+1001 where id between 10001 and 100000;

create table test_recursive_random(id integer,pid integer,name varchar,description text);

insert into test_recursive_random select * from test_recursive order by random;

create index ind_test_recursive_random_id on test_recursive_random(id);

create index ind_test_recursive_random_pid on test_recursive_random(pid);

vacuum full test_recursive_random;

analyze test_recursive_random;

create index ind_test_recursive_id on test_recursive(id);

create index ind_test_recursive_pid on test_recursive(pid);

vacuum full test_recursive;

analyze test_recursive;

本例子构造了5层的数据,有排序与非排序两种数据。

二、使用connect by

connect by的查询性能:用时 746ms

test=# explain analyze select id,pid,name from test_recursive start with id=1 connect by prior id = pid ;

QUERY PLAN

-----------------------------------------------------------------------------------------------------------------------------------------------------------

Recursive Union (cost=0.29..422.37 rows=101 width=14) (actual time=0.038..728.281 rows=100000 loops=1)

-> Index Scan using ind_test_recursive_id on test_recursive (cost=0.29..8.31 rows=1 width=14) (actual time=0.015..0.017 rows=1 loops=1)

Index Cond: (id = 1)

-> Nested Loop (cost=0.42..41.30 rows=10 width=14) (actual time=0.002..0.003 rows=1 loops=100000)

-> WorkTable Scan on "connect" (cost=0.00..0.02 rows=1 width=4) (actual time=0.000..0.000 rows=1 loops=100000)

-> Index Scan using ind_test_recursive_pid on test_recursive (cost=0.42..41.18 rows=10 width=14) (actual time=0.002..0.002 rows=1 loops=100000)

Index Cond: (pid = (PRIOR test_recursive.id))

Planning Time: 0.185 ms

Execution Time: 746.102 ms

(9 rows)

  

三、Kingbase with recursive 查询

1、排序数据:用时302ms

explain analyze with recursive tmp1 as (

select id,pid,name from test_recursive where id=1

union all

select a.id,a.pid,a.name from test_recursive a inner join tmp1 b on a.pid=b.id )

select * from tmp1;

QUERY PLAN

---------------------------------------------------------------------------------------------------------------------------------------------------------------------

CTE Scan on tmp1 (cost=4013.94..4033.96 rows=1001 width=40) (actual time=0.020..297.856 rows=100000 loops=1)

CTE tmp1

-> Recursive Union (cost=0.29..4013.94 rows=1001 width=14) (actual time=0.018..257.298 rows=100000 loops=1)

-> Index Scan using ind_test_recursive_id on test_recursive (cost=0.29..8.31 rows=1 width=14) (actual time=0.016..0.018 rows=1 loops=1)

Index Cond: (id = 1)

-> Nested Loop (cost=0.42..398.56 rows=100 width=14) (actual time=20.529..38.777 rows=16666 loops=6)

-> WorkTable Scan on tmp1 b (cost=0.00..0.20 rows=10 width=4) (actual time=0.003..2.150 rows=16667 loops=6)

-> Index Scan using ind_test_recursive_pid on test_recursive a (cost=0.42..39.74 rows=10 width=14) (actual time=0.001..0.002 rows=1 loops=100000)

Index Cond: (pid = b.id)

Planning Time: 0.207 ms

Execution Time: 302.244 ms

(11 rows)

2、非排序数据:440ms

test=# explain analyze with recursive tmp1 as (

test(# select id,pid,name from test_recursive_random where id=1

test(# union all

test(# select a.id,a.pid,a.name from test_recursive_random a inner join tmp1 b on a.pid=b.id )

test-# select * from tmp1;

QUERY PLAN

-------------------------------------------------------------------------------------------------------------------------------------------------------------------

CTE Scan on tmp1 (cost=4206.87..4226.89 rows=1001 width=40) (actual time=0.020..434.721 rows=100000 loops=1)

CTE tmp1

-> Recursive Union (cost=0.29..4206.87 rows=1001 width=14) (actual time=0.018..397.456 rows=100000 loops=1)

-> Index Scan using ind_test_recursive_random_id on test_recursive_random (cost=0.29..8.31 rows=1 width=14) (actual time=0.017..0.018 rows=1 loops=1)

Index Cond: (id = 1)

-> Nested Loop (cost=4.50..417.85 rows=100 width=14) (actual time=33.080..62.311 rows=16666 loops=6)

-> WorkTable Scan on tmp1 b (cost=0.00..0.20 rows=10 width=4) (actual time=0.007..2.412 rows=16667 loops=6)

-> Bitmap Heap Scan on test_recursive_random a (cost=4.50..41.67 rows=10 width=14) (actual time=0.002..0.003 rows=1 loops=100000)

Recheck Cond: (pid = b.id)

Heap Blocks: exact=99557

-> Bitmap Index Scan on ind_test_recursive_random_pid (cost=0.00..4.49 rows=10 width=0) (actual time=0.001..0.001 rows=1 loops=100000)

Index Cond: (pid = b.id)

Planning Time: 0.304 ms

Execution Time: 439.563 ms

(14 rows)

3、使用hash join:260ms

test=# set enable_nestloop=off;

SET

test=# explain analyze with recursive tmp1 as (

test(# select id,pid,name from test_recursive where id=1

test(# union all

test(# select a.id,a.pid,a.name from test_recursive a inner join tmp1 b on a.pid=b.id )

test-# select * from tmp1;

QUERY PLAN

-----------------------------------------------------------------------------------------------------------------------------------------------------

CTE Scan on tmp1 (cost=24101.58..24121.60 rows=1001 width=40) (actual time=0.018..255.766 rows=100000 loops=1)

CTE tmp1

-> Recursive Union (cost=0.29..24101.58 rows=1001 width=14) (actual time=0.016..218.427 rows=100000 loops=1)

-> Index Scan using ind_test_recursive_id on test_recursive (cost=0.29..8.31 rows=1 width=14) (actual time=0.015..0.017 rows=1 loops=1)

Index Cond: (id = 1)

-> Hash Join (cost=0.33..2407.32 rows=100 width=14) (actual time=13.828..32.571 rows=16666 loops=6)

Hash Cond: (a.pid = b.id)

-> Seq Scan on test_recursive a (cost=0.00..2031.00 rows=100000 width=14) (actual time=0.005..8.240 rows=100000 loops=6)

-> Hash (cost=0.20..0.20 rows=10 width=4) (actual time=5.114..5.114 rows=16667 loops=6)

Buckets: 131072 (originally 1024) Batches: 2 (originally 1) Memory Usage: 3073kB

-> WorkTable Scan on tmp1 b (cost=0.00..0.20 rows=10 width=4) (actual time=0.004..2.068 rows=16667 loops=6)

Planning Time: 0.196 ms

Execution Time: 260.360 ms

(13 rows)

四、执行计划差异分析

  • connect by 查询执行逻辑:查询是通过 pid = prior id ,也就是将前条记录的 id 作为值,传给 pid 进行索引扫描。逻辑上可以看做是逐个分支查询,上个分支查询结束,再进行下个分支扫描。loop = 100000,就是表示针对每条记录,都要访问一次索引。
  • with recursive 查询逻辑:是按层次查询,上层结果都返回后,再执行下层查询。每层可以根据所有ctid进行排序,也就是 Bitmap Index Scan,将所有ctid都返回,排序,再访问表,效率提高。另外,由于是每层数据返回后,再去关联查找下层数据,可以使用hash join,提升访问效率。 rows=16666 loop = 6,表示需要访问6个批次,每次平均 16666 条记录。 

五、Oracle connect by 查询性能

以下是同样数据量的情况下,Oracle connect by 查询的性能:

SQL> select id,pid,name from test_recursive start with id=1 connect by prior id = pid ;

100000 rows selected.

Elapsed: 00:00:00.98

Execution Plan

----------------------------------------------------------

Plan hash value: 2099392185

----------------------------------------------------------------------------------------------------------------

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

----------------------------------------------------------------------------------------------------------------

| 0 | SELECT STATEMENT | | 12 | 384 | 18 (12)| 00:00:01 |

|* 1 | CONNECT BY WITH FILTERING | | | | | |

| 2 | TABLE ACCESS BY INDEX ROWID BATCHED | TEST_RECURSIVE | 1 | 32 | 2 (0)| 00:00:01 |

|* 3 | INDEX RANGE SCAN | IND_TEST_RECURSIVE_ID | 1 | | 1 (0)| 00:00:01 |

| 4 | NESTED LOOPS | | 11 | 495 | 14 (0)| 00:00:01 |

| 5 | CONNECT BY PUMP | | | | | |

| 6 | TABLE ACCESS BY INDEX ROWID BATCHED| TEST_RECURSIVE | 11 | 352 | 12 (0)| 00:00:01 |

|* 7 | INDEX RANGE SCAN | IND_TEST_RECURSIVE_PID | 11 | | 1 (0)| 00:00:01 |

----------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

1 - access("PID"=PRIOR "ID")

3 - access("ID"=1)

7 - access("connect$_by$_pump$_002"."prior id "="PID")

Note

-----

- dynamic statistics used: dynamic sampling (level=2)

- this is an adaptive plan

Statistics

----------------------------------------------------------

0 recursive calls

0 db block gets

101983 consistent gets

0 physical reads

0 redo size

2337649 bytes sent via SQL*Net to client

73769 bytes received via SQL*Net from client

6668 SQL*Net roundtrips to/from client

8 sorts (memory)

0 sorts (disk)

100000 rows processed

 

以上是 递归查询两种写法的性能差异 的全部内容, 来源链接: utcz.com/z/535709.html

回到顶部