java大数据最全课程学习笔记(3)

database

目前CSDN,云海天,简书同步发表中,更多精彩欢迎访问我的gitee pages

目录

  • HDFS 简介及操作
    • HDFS概述
      • HDFS产出背景及定义
      • HDFS优缺点
      • HDFS组成架构
      • HDFS文件块大小(重点)
    • HDFS的Shell操作(开发重点)
      • 基本语法
      • 命令大全
      • 常用命令实操
    • HDFS客户端操作(开发重点)
      • HDFS客户端环境准备
      • 常用API
      • HDFS的I/O流操作
    • HDFS的数据流(重点)
      • HDFS写数据流程
        • 剖析文件写入
        • 异常写流程
        • 网络拓扑-节点距离计算
        • 机架感知(副本存储节点选择)
      • HDFS读数据流程
    • 其他注意事项

HDFS 简介及操作

HDFS概述

HDFS产出背景及定义

HDFS优缺点

HDFS组成架构

HDFS文件块大小(重点)

块在传输时,每64K还需要校验一次,因此块大小,必须为2的n次方,最接近100M的就是128M!

如果公司使用的是固态硬盘,写的速度是300M/S,将块大小调整到 256M

如果公司使用的是固态硬盘,写的速度是500M/S,将块大小调整到 512M

  • 但是块的大小不能设置太小,也不能设置太大

    • 太大

      • 在一些分块读取的场景,不够灵活,会带来额外的网络消耗
      • 在上传文件时,一旦发生故障,会造成资源的浪费

    • 太小

      • 同样大小的文件,会占用过多的NN的元数据空间
      • 在进行读写操作时,会消耗额外的寻址时间

HDFS的Shell操作(开发重点)

基本语法

bin/hadoop fs 具体命令 OR bin/hdfs dfs 具体命令

dfs是fs的实现类。

命令大全

[atguigu@hadoop102 ~]$ hadoop fs

Usage: hadoop fs [generic options]

[-appendToFile <localsrc> ... <dst>]

[-cat [-ignoreCrc] <src> ...]

[-checksum <src> ...]

[-chgrp [-R] GROUP PATH...]

[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

[-chown [-R] [OWNER][:[GROUP]] PATH...]

[-copyFromLocal [-f] [-p] [-l] <localsrc> ... <dst>]

[-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

[-count [-q] [-h] <path> ...]

[-cp [-f] [-p | -p[topax]] <src> ... <dst>]

[-createSnapshot <snapshotDir> [<snapshotName>]]

[-deleteSnapshot <snapshotDir> <snapshotName>]

[-df [-h] [<path> ...]]

[-du [-s] [-h] <path> ...]

[-expunge]

[-find <path> ... <expression> ...]

[-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

[-getfacl [-R] <path>]

[-getfattr [-R] {-n name | -d} [-e en] <path>]

[-getmerge [-nl] <src> <localdst>]

[-help [cmd ...]]

[-ls [-d] [-h] [-R] [<path> ...]]

[-mkdir [-p] <path> ...]

[-moveFromLocal <localsrc> ... <dst>]

[-moveToLocal <src> <localdst>]

[-mv <src> ... <dst>]

[-put [-f] [-p] [-l] <localsrc> ... <dst>]

[-renameSnapshot <snapshotDir> <oldName> <newName>]

[-rm [-f] [-r|-R] [-skipTrash] <src> ...]

[-rmdir [--ignore-fail-on-non-empty] <dir> ...]

[-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]

[-setfattr {-n name [-v value] | -x name} <path>]

[-setrep [-R] [-w] <rep> <path> ...]

[-stat [format] <path> ...]

[-tail [-f] <file>]

[-test -[defsz] <path>]

[-text [-ignoreCrc] <src> ...]

[-touchz <path> ...]

[-truncate [-w] <length> <path> ...]

[-usage [cmd ...]]

常用命令实操

  1. 启动Hadoop集群(方便后续的测试)

    [atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh

    [atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-yarn.sh

  2. -help:输出这个命令参数

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -help rm

  3. -ls: 显示目录信息

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -ls /

  4. -mkdir:在HDFS上创建目录

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir -p /sanguo/shuguo

  5. -moveFromLocal:从本地剪切粘贴到HDFS

    [atguigu@hadoop102 hadoop-2.7.2]$ touch kongming.txt

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -moveFromLocal ./kongming.txt /sanguo/shuguo

  6. -appendToFile:追加一个文件到已经存在的文件末尾

    [atguigu@hadoop102 hadoop-2.7.2]$ touch liubei.txt

    [atguigu@hadoop102 hadoop-2.7.2]$ vi liubei.txt

    输入

    san gu mao lu

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -appendToFile liubei.txt /sanguo/shuguo/kongming.txt

  7. -cat:显示文件内容

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -cat /sanguo/shuguo/kongming.txt

  8. -chgrp 、-chmod、-chown:Linux文件系统中的用法一样,修改文件所属权限

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs  -chmod  666  /sanguo/shuguo/kongming.txt

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -chown atguigu:atguigu /sanguo/shuguo/kongming.txt

  9. -copyFromLocal:从本地文件系统中拷贝文件到HDFS路径去

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -copyFromLocal README.txt /

  10. -copyToLocal:从HDFS拷贝到本地

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -copyToLocal /sanguo/shuguo/kongming.txt ./

  11. -cp :从HDFS的一个路径拷贝到HDFS的另一个路径

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -cp /sanguo/shuguo/kongming.txt /zhuge.txt

  12. -mv:在HDFS目录中移动文件

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -mv /zhuge.txt /sanguo/shuguo/

  13. -get:等同于copyToLocal,就是从HDFS下载文件到本地

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -get /sanguo/shuguo/kongming.txt ./

  14. -getmerge:合并下载多个文件,比如HDFS的目录 /aaa/下有多个文件:log.1, log.2,log.3,...

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -getmerge /sanguo/shuguo* ./zaiyiqi.txt

  15. -put:等同于copyFromLocal

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -put ./zaiyiqi.txt /

  16. -tail:显示一个文件的末尾

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -tail /sanguo/shuguo/kongming.txt

  17. -rm:删除文件或文件夹

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -rm -r -f /zaiyiqi.txt

  18. -rmdir:删除空目录

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -mkdir /test

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -rmdir /test

  19. -du统计文件夹的大小信息

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -du -s -h /sanguo/shuguo

    26 /sanguo/shuguo

    [atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -du -h /sanguo/shuguo

    13 /sanguo/shuguo/kongming.txt

    13 /sanguo/shuguo/zhuge.txt

  20. -setrep:设置HDFS中文件的副本数量

[atguigu@hadoop102 hadoop-2.7.2]$ hadoop fs -setrep 10 /sanguo/shuguo/kongming.txt

这里设置的副本数只是记录在NameNode的元数据中,是否真的会有这么多副本,还得看DataNode的数量。因为目前只有3台设备,最多也就3个副本,只有节点数的增加到10台时,副本数才能达到10。

HDFS客户端操作(开发重点)

HDFS客户端环境准备

  1. 根据自己电脑的操作系统拷贝对应的编译后的hadoop jar包到非中文路径

  2. 配置HADOOP_HOME环境变量

  3. 配置Path环境变量

  4. 创建一个Maven工程HdfsClientDemo

  5. 导入相应的依赖坐标+日志添加

    <dependencies>

    <dependency>

    <groupId>junit</groupId>

    <artifactId>junit</artifactId>

    <version>RELEASE</version>

    </dependency>

    <dependency>

    <groupId>org.apache.logging.log4j</groupId>

    <artifactId>log4j-core</artifactId>

    <version>2.8.2</version>

    </dependency>

    <dependency>

    <groupId>org.apache.hadoop</groupId>

    <artifactId>hadoop-common</artifactId>

    <version>2.7.2</version>

    </dependency>

    <dependency>

    <groupId>org.apache.hadoop</groupId>

    <artifactId>hadoop-client</artifactId>

    <version>2.7.2</version>

    </dependency>

    <dependency>

    <groupId>org.apache.hadoop</groupId>

    <artifactId>hadoop-hdfs</artifactId>

    <version>2.7.2</version>

    </dependency>

    <!--下面这个可以注释掉,如果找不到jdk.tools再配置上-->

    <dependency>

    <groupId>jdk.tools</groupId>

    <artifactId>jdk.tools</artifactId>

    <version>1.8</version>

    <scope>system</scope>

    <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>

    </dependency>

    </dependencies>

    注意:如果Eclipse/Idea打印不出日志,在控制台上只显示

    1.log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).  

    2.log4j:WARN Please initialize the log4j system properly.  

    3.log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

    需要在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入

    log4j.rootLogger=INFO, stdout

    log4j.appender.stdout=org.apache.log4j.ConsoleAppender

    log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

    log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n

    log4j.appender.logfile=org.apache.log4j.FileAppender

    log4j.appender.logfile.File=target/spring.log

    log4j.appender.logfile.layout=org.apache.log4j.PatternLayout

    log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

常用API

public class TestHDFS {

private FileSystem fs;

private Configuration conf = new Configuration();

@Before

public void init() throws IOException, URISyntaxException, InterruptedException {

//创建一个客户端对象

fs=FileSystem.get(new URI("hdfs://hadoop101:9000"),conf,"atguigu");

}

@After

public void close() throws IOException {

if (fs !=null) {

fs.close();

}

}

// hadoop fs(运行一个通用的用户客户端) -mkdir /xxx

// 创建一个客户端对象 ,调用创建目录的方法,路径作为方法的参数掺入

@Test

public void testMkdir() throws IOException {

fs.mkdirs(new Path("/eclipse2"));

}

// 上传文件: hadoop fs -put 本地文件 hdfs

@Test

public void testUpload() throws Exception {

/**

* @param delSrc

* whether to delete the src

* @param overwrite

* whether to overwrite an existing file

* @param src path

* @param dst path

*/

fs.copyFromLocalFile(false, true, new Path("F:/BaiduNetdiskDownload/hadoop-2.7.2.zip"), new Path("/"));

}

// 下载文件: hadoop fs -get hdfs 本地路径

@Test

public void testDownload() throws Exception {

/**

* @param delSrc

* whether to delete the src

* @param src path

* @param dst path

* @param useRawLocalFileSystem

* whether to use RawLocalFileSystem as local file system or not.

*

*/

fs.copyToLocalFile(false, new Path("/wcinput"), new Path("f:/test"), true);

}

// 删除文件: hadoop fs -rm -r -f 路径

@Test

public void testDelete() throws Exception {

fs.delete(new Path("/wcoutpout2"), true);

}

// 重命名: hadoop fs -mv 源文件 目标文件

@Test

public void testRename() throws Exception {

fs.rename(new Path("/eclipse1"), new Path("/eclipsedir"));

}

// 判断当前路径是否存在

@Test

public void testIfPathExsits() throws Exception {

System.out.println(fs.exists(new Path("/eclipsedir1")));

}

// 判断当前路径是目录还是文件

@Test

public void testFileIsDir() throws Exception {

//Path path = new Path("/eclipsedir");

Path path = new Path("/wcoutput1");

// 不建议使用此方法,建议好似用Instead reuse the FileStatus returned

//by getFileStatus() or listStatus() methods.

/* System.out.println(fs.isDirectory(path));

System.out.println(fs.isFile(path));*/

//FileStatus fileStatus = fs.getFileStatus(path);

FileStatus[] listStatus = fs.listStatus(path);

for (FileStatus fileStatus : listStatus) {

//获取文件名 Path是完整的路径 协议+文件名

Path filePath = fileStatus.getPath();

System.out.println(filePath.getName()+"是否是目录:"+fileStatus.isDirectory());

System.out.println(filePath.getName()+"是否是文件:"+fileStatus.isFile());

}

}

// 获取到文件的块信息

@Test

public void testGetBlockInformation() throws Exception {

Path path = new Path("/hadoop-2.7.2.zip");

RemoteIterator<LocatedFileStatus> status = fs.listLocatedStatus(path);

while(status.hasNext()) {

LocatedFileStatus locatedFileStatus = status.next();

System.out.println("Owner:"+locatedFileStatus.getOwner());

System.out.println("Group:"+locatedFileStatus.getGroup());

//---------------块的位置信息--------------------

BlockLocation[] blockLocations = locatedFileStatus.getBlockLocations();

for (BlockLocation blockLocation : blockLocations) {

System.out.println(blockLocation);

System.out.println("------------------------");

}

}

}

}

对常用的API做个说明:

  1. FileSystem: 文件系统的抽象基类

    • FileSystem的实现取决于fs.defaultFS的配置!有两种实现!

    • LocalFileSystem: 本地文件系统 fs.defaultFS=file:///

    • DistributedFileSystem: 分布式文件系统 fs.defaultFS=hdfs://xxx:9000

    • 声明用户身份:

    FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), conf, "atguigu");

  2. Configuration : 功能是读取配置文件中的参数

    • Configuration在读取配置文件的参数时,根据文件名,从类路径按照顺序读取配置文件!先读取 xxx-default.xml,再读取xxx-site.xml

    • Configuration类一加载,就会默认读取8个配置文件!

    • 将8个配置文件中所有属性,读取到一个Map集合中!

    • 也提供了set(name,value),来手动设置用户自定义的参数!

  3. FileStatus: 代表一个文件的状态(文件的属性信息)

  4. offset和length

    • offset是偏移量: 指块在文件中的起始位置

    • length是长度,指块大小

    • 刚刚上传的hadoop-2.7.2.zip,210.01MB

    hadoop-2.7.2.zip

    区间

    length

    offset

    blk1

    0-128MB

    128MB

    0

    blk2

    128MB-256MB

    82.01MB

    128MB

  5. LocatedFileStatus

    • LocatedFileStatus是FileStatus的子类,除了文件的属性,还有块的位置信息!

  6. 参数优先级

    参数优先级排序:(1)客户端代码中设置的值 >(2)ClassPath下的用户自定义配置文件 >(3)然后是服务器的默认配置

HDFS的I/O流操作

上面我们学的API操作HDFS系统都是框架封装好的。那么如果我们想自己实现上述API的操作该怎么实现呢?

我们可以采用IO流的方式实现数据的上传和下载。

/*

* 1. 上传文件时,只上传这个文件的一部分

*

* 2. 下载文件时,如何只下载这个文件的某一个块?

* 或只下载文件的某一部分?

*/

public class TestCustomUploadAndDownload {

private FileSystem fs;

private FileSystem localFs;

private Configuration conf = new Configuration();

@Before

public void init() throws IOException, URISyntaxException, InterruptedException {

//创建一个客户端对象

fs=FileSystem.get(new URI("hdfs://hadoop101:9000"),conf,"atguigu");

localFs=FileSystem.get(new Configuration());

}

@After

public void close() throws IOException {

if (fs !=null) {

fs.close();

}

}

// 只上传文件的前10M

/*

* 官方的实现

* InputStream in=null;

OutputStream out = null;

try {

in = srcFS.open(src);

out = dstFS.create(dst, overwrite);

IOUtils.copyBytes(in, out, conf, true);

} catch (IOException e) {

IOUtils.closeStream(out);

IOUtils.closeStream(in);

throw e;

}

*/

@Test

public void testCustomUpload() throws Exception {

//提供两个Path,和两个FileSystem

Path src=new Path("F:/BaiduNetdiskDownload/hadoop-2.7.2.zip");

Path dest=new Path("/hadoop10M.zip");

// 使用本地文件系统中获取的输入流读取本地文件

FSDataInputStream is = localFs.open(src);

// 使用HDFS的分布式文件系统中获取的输出流,向dest路径写入数据

FSDataOutputStream os = fs.create(dest, true);

// 1k

byte [] buffer=new byte[1024];

// 流中数据的拷贝

for (int i = 0; i < 1024 * 10; i++) {

is.read(buffer);

os.write(buffer);

}

//关流

IOUtils.closeStream(is);

IOUtils.closeStream(os);

}

/**

* 下载第一块

*/

@Test

public void testFirstBlock() throws Exception {

//提供两个Path,和两个FileSystem

Path src=new Path("/hadoop-2.7.2.zip");

Path dest=new Path("f:/test/firstBlock");

// 使用HDFS的分布式文件系统中获取的输入流,读取HDFS上指定路径的数据

FSDataInputStream is = fs.open(src);

// 使用本地文件系统中获取的输出流写入本地文件

FSDataOutputStream os = localFs.create(dest, true);

// 1k

byte [] buffer=new byte[1024];

// 流中数据的拷贝

for (int i = 0; i < 1024 * 128; i++) {

is.read(buffer);

os.write(buffer);

}

//关流

IOUtils.closeStream(is);

IOUtils.closeStream(os);

}

/**

* 下载第二块,这里也就是最后一块

*/

@Test

public void testFinalBlock() throws Exception {

//提供两个Path,和两个FileSystem

Path src=new Path("/hadoop-2.7.2.zip");

Path dest=new Path("f:/test/finalBlock");

// 使用HDFS的分布式文件系统中获取的输入流,读取HDFS上指定路径的数据

FSDataInputStream is = fs.open(src);

// 使用本地文件系统中获取的输出流写入本地文件

FSDataOutputStream os = localFs.create(dest, true);

//定位到流的指定位置

is.seek(1024*1024*128);

IOUtils.copyBytes(is, os, conf);

}

  • windows下的合并命令: type finalBlock >> firstBlock

HDFS的数据流(重点)

HDFS写数据流程

剖析文件写入

  • HDFS写数据流程,如图所示

  1. 客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
  2. NameNode返回是否可以上传。
  3. 客户端请求第一个 Block上传到哪几个DataNode服务器上。
  4. NameNode返回3个DataNode节点,分别为dn1、dn2、dn3。
  5. 客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
  6. dn1、dn2、dn3逐级应答客户端。
  7. 客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet(64k)为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。
  8. 当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。

异常写流程

1-6步同上

    • 客户端每读取64K的数据,封装为一个packet,封装成功的packet,放入到一个队列中,这个队列称为dataQuene(待发送数据包)
    • 在发送时,先将dataQuene中的packet按顺序发送,发送后再放入到ackquene(正在发送的队列)。
    • 每个节点在收到packet后,向客户端发送ack确认消息!
    • 如果一个packet在发送后,已经收到了所有DN返回的ack确认消息,这个packet会在ackquene中删除!
    • 假如一个packet在发送后,在收到DN返回的ack确认消息时超时,传输中止,ackquene中的packet会回滚到dataQuene。
    • 重新建立通道,剔除坏的DN节点。建立完成之后,继续传输!
    • 只要有一个DN节点收到了数据,DN上报NN已经收完此块,NN就认为当前块已经传输成功!
    • NN会自动维护副本数!

网络拓扑-节点距离计算

在HDFS写数据的过程中,NameNode会选择距离待上传数据最近距离的DataNode接收数据。那么这个最近距离怎么计算呢?

节点距离:两个节点到达最近的共同祖先的距离总和。

例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,这里给出四种距离描述,如图所示

大家算一算每两个节点之间的距离,如图所示。

机架感知(副本存储节点选择)

  1. 官方ip地址

    机架感知说明

    http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Replication

    For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica on one node in the local rack, another on a different node in the local rack, and the last on a different node in a different rack.

  2. Hadoop2.7.2副本节点选择

HDFS读数据流程

  1. 客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
  2. 挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
  3. DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)。
  4. 客户端以Packet为单位接收,先在本地缓存,然后写入目标文件。

其他注意事项

  • HDFS副本数的概念指的是最大副本数!具体存放几个副本需要参考DN节点的数量!每个DN节点最多只能存储一个副本!
  • HDFS默认块大小为128M,128M指的是块的最大大小!每个块最多存储128M的数据,如果当前块存储的数据不满128M存了多少数据,就占用多少的磁盘空间!一个块只属于一个文件!
  • shell操作命令

    • hadoop fs : 既可以对本地文件系统进行操作还可以操作分布式文件系统
    • hdfs dfs : 只能操作分布式文件系统

以上是 java大数据最全课程学习笔记(3) 的全部内容, 来源链接: utcz.com/z/534651.html

回到顶部