HBaseFilter过滤器之RowFilter详解

database

前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考。RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase Rowkey进行数据过滤时可以考虑使用它。比较器细节及原理请参照之前的更文:HBase Filter 过滤器之比较器 Comparator 原理及源码学习

一。Java Api

头部代码

public class RowFilterDemo {

private static boolean isok = false;

private static String tableName = "test";

private static String[] cfs = new String[]{"f"};

private static String[] data = new String[]{"row-ac:f:c1:v1", "row-ab:f:c2:v2", "row-bc:f:c3:v3", "row-abc:f:c4:v4"};

public static void main(String[] args) throws IOException {

MyBase myBase = new MyBase();

Connection connection = myBase.createConnection();

if (isok) {

myBase.deleteTable(connection, tableName);

myBase.createTable(connection, tableName, cfs);

myBase.putRows(connection, tableName, data); // 造数据

}

Table table = connection.getTable(TableName.valueOf(tableName));

Scan scan = new Scan();

中部代码

向右滑动滚动条可查看输出结果。

1. BinaryComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ac]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc, row-bc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-bc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ac, row-bc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc, row-ac]

2. BinaryPrefixComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-bc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-bc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac, row-bc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // []

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac]

3. SubstringComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("ab")); // [row-ab, row-abc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new SubstringComparator("ab")); // [row-ac, row-bc]

4. RegexStringComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new RegexStringComparator("abc")); // [row-ab, row-ac, row-bc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("abc")); // [row-abc]

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("a")); // [row-ab, row-abc, row-ac]

5. NullComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new NullComparator()); // []

RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new NullComparator()); // [row-ab, row-abc, row-ac, row-bc]

尾部代码

        scan.setFilter(rowFilter);

ResultScanner scanner = table.getScanner(scan);

Iterator<Result> iterator = scanner.iterator();

LinkedList<String> rowkeys = new LinkedList<>();

while (iterator.hasNext()) {

Result result = iterator.next();

String rowkey = Bytes.toString(result.getRow());

rowkeys.add(rowkey);

}

System.out.println(rowkeys);

scanner.close();

table.close();

connection.close();

}

}

二。Shell Api

1. BinaryComparator 构造过滤器

方式一:

hbase(main):006:0> scan "test",{FILTER=>"RowFilter(=,"binary:row-ab")"}

ROW COLUMN+CELL

row-ab column=f:c2, timestamp=1588156704669, value=v2

1 row(s) in 0.0140 seconds

支持的比较运算符:= != > >= < <=,不再一一举例。

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.BinaryComparator

import org.apache.hadoop.hbase.filter.RowFilter

hbase(main):016:0> scan "test",{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf("EQUAL"), BinaryComparator.new(Bytes.toBytes("row-ab")))}

ROW COLUMN+CELL

row-ab column=f:c2, timestamp=1588156704669, value=v2

1 row(s) in 0.0310 seconds

支持的比较运算符:LESS、LESS_OR_EQUAL、EQUAL、NOT_EQUAL、GREATER、GREATER_OR_EQUAL,不再一一举例。

推荐使用方式一,更简洁方便。

2. BinaryPrefixComparator 构造过滤器

方式一:

hbase(main):023:0> scan "test",{FILTER=>"RowFilter(=,"binaryprefix:row-ab")"}

ROW COLUMN+CELL

row-ab column=f:c2, timestamp=1588156704669, value=v2

row-abc column=f:c4, timestamp=1588156704669, value=v4

2 row(s) in 0.0360 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.BinaryPrefixComparator

import org.apache.hadoop.hbase.filter.RowFilter

hbase(main):027:0> scan "test",{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf("EQUAL"), BinaryPrefixComparator.new(Bytes.toBytes("row-ab")))}

ROW COLUMN+CELL

row-ab column=f:c2, timestamp=1588156704669, value=v2

row-abc column=f:c4, timestamp=1588156704669, value=v4

2 row(s) in 0.0110 seconds

其它同上。

3. SubstringComparator 构造过滤器

方式一:

hbase(main):001:0> scan "test",{FILTER=>"RowFilter(=,"substring:row-ab")"}

ROW COLUMN+CELL

row-ab column=f:c2, timestamp=1588156704669, value=v2

row-abc column=f:c4, timestamp=1588156704669, value=v4

2 row(s) in 0.3200 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.SubstringComparator

import org.apache.hadoop.hbase.filter.RowFilter

hbase(main):007:0> scan "test",{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf("EQUAL"), SubstringComparator.new("row-ab"))}

ROW COLUMN+CELL

row-ab column=f:c2, timestamp=1588156704669, value=v2

row-abc column=f:c4, timestamp=1588156704669, value=v4

2 row(s) in 0.0230 seconds

区别于上的是这里直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。

4. RegexStringComparator 构造过滤器

import org.apache.hadoop.hbase.filter.CompareFilter

import org.apache.hadoop.hbase.filter.RegexStringComparator

import org.apache.hadoop.hbase.filter.RowFilter

hbase(main):007:0> scan "test",{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf("EQUAL"), RegexStringComparator.new("row-ab"))}

ROW COLUMN+CELL

row-ab column=f:c2, timestamp=1588156704669, value=v2

row-abc column=f:c4, timestamp=1588156704669, value=v4

2 row(s) in 0.0230 seconds

该比较器直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。若想使用第一种方式可以传入regexstring试一下,我的版本有点低暂时不支持,不再演示了。

注意这里的正则匹配指包含关系,对应底层find()方法。

此外,RowFilter 不支持使用LongComparator比较器,且BitComparator、NullComparator 比较器用之甚少,也不再介绍。

查看文章全部源代码请访以下GitHub地址:

https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/RowFilterDemo.java

转载请注明出处!欢迎关注本人微信公众号【HBase工作笔记】

以上是 HBaseFilter过滤器之RowFilter详解 的全部内容, 来源链接: utcz.com/z/533439.html

回到顶部