Python中numpy如何构建多维数组

python

有的小伙伴不知道如何构建多维数组,正好小编找到了一些办法,具体如下:

1.创建一般的多维数组


import numpy as np

a = np.array([1,2,3], dtype=int) # 创建1*3维数组 array([1,2,3])

type(a) # numpy.ndarray类型

a.shape # 维数信息(3L,)

a.dtype.name # 'int32'

a.size # 元素个数:3

a.itemsize #每个元素所占用的字节数目:4

b=np.array([[1,2,3],[4,5,6]],dtype=int) # 创建2*3维数组 array([[1,2,3],[4,5,6]])

b.shape # 维数信息(2L,3L)

b.size # 元素个数:6

b.itemsize # 每个元素所占用的字节数目:4

c=np.array([[1,2,3],[4,5,6]],dtype='int16') # 创建2*3维数组 array([[1,2,3],[4,5,6]],dtype=int16)

c.shape # 维数信息(2L,3L)

c.size # 元素个数:6

c.itemsize # 每个元素所占用的字节数目:2

c.ndim # 维数

d=np.array([[1,2,3],[4,5,6]],dtype=complex) # 复数二维数组

d.itemsize # 每个元素所占用的字节数目:16

d.dtype.name # 元素类型:'complex128'


2.创建特殊类型的多维数组


a1 = np.zeros((3,4)) # 创建3*4全零二维数组

输出:

array([[ 0., 0., 0., 0.],

 [ 0., 0., 0., 0.],

 [ 0., 0., 0., 0.]])

a1.dtype.name # 元素类型:'float64'

a1.size # 元素个数:12

a1.itemsize # 每个元素所占用的字节个数:8

a2 = np.ones((2,3,4), dtype=np.int16) # 创建2*3*4全1三维数组

a2 = np.ones((2,3,4), dtype='int16')  # 创建2*3*4全1三维数组

输出:

array([[[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]],

 [[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]]], dtype=int16)

a3 = np.empty((2,3)) # 创建2*3的未初始化二维数组

输出:(may vary)

array([[ 1., 2., 3.],

 [ 4., 5., 6.]])

a4 = np.arange(10,30,5) # 初始值10,结束值:30(不包含),步长:5

输出:array([10, 15, 20, 25])

a5 = np.arange(0,2,0.3) # 初始值0,结束值:2(不包含),步长:0.2

输出:array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

from numpy import pi

np.linspace(0, 2, 9) # 初始值0,结束值:2(包含),元素个数:9

输出:

array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])

x = np.linspace(0, 2*pi, 9)

输出:

array([ 0.  , 0.78539816, 1.57079633, 2.35619449, 3.14159265,

 3.92699082, 4.71238898, 5.49778714, 6.28318531])

a = np.arange(6)

输出:

array([0, 1, 2, 3, 4, 5])

b = np.arange(12).reshape(4,3)

输出:

array([[ 0, 1, 2],

 [ 3, 4, 5],

 [ 6, 7, 8],

 [ 9, 10, 11]])

c = np.arange(24).reshape(2,3,4)

输出:

array([[[ 0, 1, 2, 3],

 [ 4, 5, 6, 7],

 [ 8, 9, 10, 11]],

 [[12, 13, 14, 15],

 [16, 17, 18, 19],

 [20, 21, 22, 23]]]) 

使用numpy.set_printoptions可以设置numpy变量的打印格式。

在ipython环境下,使用help(numpy.set_printoptions)查询使用帮助和示例。


学会了构建多维数组,下期还有Python中numpy多维数组的用法,小伙伴们不要错过哦~更多Python学习推荐:云海天Python教程网

以上是 Python中numpy如何构建多维数组 的全部内容, 来源链接: utcz.com/z/529819.html

回到顶部