如何实现python绘制混淆矩阵?

python

大家从python基础到如今的入门,想必都对python有一定基础,今天小编给大家带来一个关于python的高阶内容——绘制混淆矩阵,一起来看下吧~

介绍:

混淆矩阵通过表示正确/不正确标签的计数来表示模型在表格格式中的准确性。

计算/绘制混淆矩阵:

以下是计算混淆矩阵的过程。

您需要一个包含预期结果值的测试数据集或验证数据集。

  • 对测试数据集中的每一行进行预测。

  • 从预期的结果和预测计数:

  • 每个类的正确预测数量。

  • 每个类的错误预测数量,由预测的类组织。

然后将这些数字组织成表格或矩阵,如下所示:

  • Expected down the side:矩阵的每一行都对应一个预测的类。

  • Predicted across the top:矩阵的每一列对应于一个实际的类。

然后将正确和不正确分类的计数填入表格中。

Reading混淆矩阵:

一个类的正确预测的总数进入该类值的预期行,以及该类值的预测列。

以同样的方式,一个类别的不正确预测总数进入该类别值的预期行,以及该类别值的预测列。

对角元素表示预测标签等于真实标签的点的数量,而非对角线元素是分类器错误标记的元素。混淆矩阵的对角线值越高越好,表明许多正确的预测。

Python绘制混淆矩阵 :

import itertools

 

import numpy as np

 

import matplotlib.pyplot as plt

 

from sklearn import svm, datasets

 

from sklearn.model_selection import train_test_split

 

from sklearn.metrics import confusion_matrix

 

# import some data to play with

 

iris = datasets.load_iris()

 

X = iris.data

 

y = iris.target

 

class_names = iris.target_names

 

# Split the data into a training set and a test set

 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

 

# Run classifier, using a model that is too regularized (C too low) to see

 

# the impact on the results

 

classifier = svm.SVC(kernel='linear', C=0.01)

 

y_pred = classifier.fit(X_train, y_train).predict(X_test)

 

def plot_confusion_matrix(cm, classes,

 

normalize=False,

 

title='Confusion matrix',

 

cmap=plt.cm.Blues):

 

"""

 

This function prints and plots the confusion matrix.

 

Normalization can be applied by setting `normalize=True`.

 

"""

 

if normalize:

 

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

 

print("Normalized confusion matrix")

 

else:

 

print('Confusion matrix, without normalization')

 

print(cm)

 

plt.imshow(cm, interpolation='nearest', cmap=cmap)

 

plt.title(title)

 

plt.colorbar()

 

tick_marks = np.arange(len(classes))

 

plt.xticks(tick_marks, classes, rotation=45)

 

plt.yticks(tick_marks, classes)

 

fmt = '.2f' if normalize else 'd'

 

thresh = cm.max() / 2.

 

for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

 

plt.text(j, i, format(cm[i, j], fmt),

 

horizontalalignment="center",

 

color="white" if cm[i, j] > thresh else "black")

 

color="white" if cm[i, j] > thresh else "black")

 

plt.tight_layout()

 

plt.ylabel('True label')

 

plt.xlabel('Predicted label')

 

# Compute confusion matrix

 

cnf_matrix = confusion_matrix(y_test, y_pred)

 

np.set_printoptions(precision=2)

 

# Plot non-normalized confusion matrix

 

plt.figure()

 

plot_confusion_matrix(cnf_matrix, classes=class_names,

 

title='Confusion matrix, without normalization')

 

# Plot normalized confusion matrix

 

plt.figure()

 

plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,

 

title='Normalized confusion matrix')

 

plt.show()

Confusion matrix, without normalization

 

[[13 0 0]

 

[ 0 10 6]

 

[ 0 0 9]]

 

Normalized confusion matrix

 

[[ 1. 0. 0. ]

 

[ 0. 0.62 0.38]

 

[ 0. 0. 1. ]]

好了,大家可以消化学习下哦~如需了解更多python实用知识,点击进入云海天Python教程网

以上是 如何实现python绘制混淆矩阵? 的全部内容, 来源链接: utcz.com/z/529178.html

回到顶部