决策树缺失值处理
缺失值算是决策树里处理起来比较麻烦的了,其他简单的我就不发布了。
# encoding:utf-8from__future__import division
__author__ = 'HP'
import copy
import math
import numpy as np
import pandas as pd
from collections import Counter
from sklearn.preprocessing import LabelEncoder
################################
# id3
# 离散属性
# 多分类
# 多重字典记录学习规则
# 非递归
# 深度优先
# 预剪枝
### 缺失值处理
# 解决两个问题
# 如何进行划分属性选择,缺失值如何处理
# 如何进行样本划分,缺失值对应的样本如何划分
################################
''' 缺失值处理
1. 如何进行属性选择
a. 第一次选择划分属性时,样本等权重,均为1,找出未缺失的样本集,计算该样本集的信息增益 和 该样本集的占比,两者相乘即为真正的信息增益
. 注意这时计算占比,就是数个数,因为权重都是1
. 计算信息增益时,P也是数个数
b. 后面选择划分属性时,样本不等权重,找出未缺失的样本集,计算该样本集的信息增益 和 该样本集的占比,两者相乘即为真正的信息增益
. 此时样本权重不全为1
. 计算占比时不是数个数,而是求权重和
. 计算信息增益的P时,也是求权重和
2. 如何划分节点
a. 未缺失按照正常方法划分,权重都为1
b. 缺失值划到所有子集当中,权重不为1, 而是该属性值占未缺失的样本集的比例
'''
def mydata():
data = pd.read_csv('xg3.txt',index_col=[0], encoding='gbk')
data[[-1]] = data.apply(lambda x:x[-1].strip(), axis=1)
# print(data)
# print(pd.get_dummies(data[[0]]))
data.columns = range(9)
# print(data)
encode_str = LabelEncoder()
str_cols = [0, 1, 2, 3, 4, 5, 8]
for i in str_cols:
data[[i]] = encode_str.fit_transform(data[[i]])
return data.values
def get_label(labels):
count_label = Counter(labels)
key = None
sum = 0
for label, count in count_label.items():
if count > sum:
sum = count
key = label
return key
def entropy(attr):
# 信息熵
attr_values_count = Counter(attr)
attr_len = len(attr)
sum = 0
for i in attr_values_count.values():
sum += -1 * i / attr_len * math.log(i / attr_len, 2)
return sum
def gain_queshi_equal_weight(attr, label):
# 缺失属性的信息增益,用于初次划分,初次划分样本权重都为1
index_nan = np.isnan(attr)
index_nonan = np.where(attr>=0)
# 未缺失属性及标签
attr_new = attr[index_nonan]
label_new = label[index_nonan]
# 未缺失样本数
count_nonan = label_new.shape[0]
# 未缺失占比
zhanbi = attr_new.shape[0]/attr.shape[0]
# 未缺失的原始熵
ori_entropy = entropy(label_new)
# 未缺失的新熵
new_entropy = 0
for key, count in Counter(attr_new).items():
# 未缺失中属性值为key的占比 * key对应的样本集的熵
new_entropy += count/count_nonan * entropy(label_new[np.where(attr_new == key)])
# 信息增益
gain = zhanbi * (ori_entropy - new_entropy)
return gain
def split_node_queshi(node, attr_split):
# 属性有缺失值的样本划分
index_nan = np.isnan(node[:,attr_split])
index_nonan = np.where(node[:,attr_split]>=0)
# 未缺失属性值对应的样本集
node_new = node[index_nonan]
# 缺失属性值对应的样本集
sample_queshi = node[index_nan]
# 未缺失样本大小
count_nonan = node_new.shape[0]
### 对该样本集进行划分
# 未缺失的划分 [属性值,样本集,样本占比]
split = []
for key, node_child in pd.DataFrame(node_new).groupby(attr_split):
# 属性值为key的样本在未缺失样本中占比
zhanbi_key = round(len(node_child) / count_nonan, 3)
# 未缺失样本权重为1
weight = [1] * len(node_child)
# 添加缺失样本
node_child = np.vstack((node_child.values, sample_queshi))
# 缺失样本权重
weight.extend([zhanbi_key] * len(sample_queshi))
split.append([key, node_child, np.array(weight)])
return split
def entropy_no_equal_weight(attr, weight):
# 样本不等权重的信息熵
sum = 0
sum_weight = np.sum(weight)
for key in Counter(attr).keys():
index = np.where(attr==key)
zhanbi = np.sum(weight[index]) / sum_weight
sum += -1 * zhanbi * math.log(zhanbi, 2)
return sum
def gain_queshi_no_equal_weight(attr, weight, label):
# 缺失属性的信息增益,样本权重不相等,用于第一次之后的属性选择
index_nan = np.isnan(attr)
index_nonan = np.where(attr>=0)
# 未缺失的属性/标签/权重
attr_new = attr[index_nonan]
label_new = label[index_nonan]
weight_new = weight[index_nonan]
# 未缺失对应的样本占比
zhanbi = np.sum(weight_new) / np.sum(weight)
### 未缺失对应的信息增益
# 未缺失对应的原始熵
ori_entropy = entropy_no_equal_weight(label_new, weight_new)
# 未缺失的新熵
new_entropy = 0
for key in Counter(attr_new).keys():
index_key = np.where(attr_new==key)
label_key = label_new[index_key]
weight_key = weight_new[index_key]
new_entropy += len(label_key) / len(label_new) * entropy_no_equal_weight(label_key, weight_key)
# 信息增益
gain = zhanbi * (ori_entropy - new_entropy)
return gain
if__name__ == '__main__':
data = mydata()
# 离散型样本
data = data[:,[0,1,2,3,4,5,8]]
data[0, 0] = None
data[4, 0] = None
data[12, 0] = None
data[7, 3] = None
data[9, 3] = None
print(data)
# 缺失属性的信息增益 样本等权重
for i in range(data.shape[1]):
print gain_queshi_equal_weight(data[:,i], data[:,-1])
# 缺失值属性的样本划分
split = split_node_queshi(data, 3)
print(split)
# 缺失属性的信息增益 样本不等权重
# weight = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1/3, 1/3])
# gain_queshi_no_equal_weight(data[:,0], weight, data[:,-1])
# 以色泽为例
gain = gain_queshi_no_equal_weight(split[2][1][:,0], split[2][2],split[2][1][:,-1])
print(gain)
以上是 决策树缺失值处理 的全部内容, 来源链接: utcz.com/z/508813.html