Python标准库optparse解析器的命令行选项
源代码: Lib/optparse.py
3.2 版后已移除: optparse
模块已被弃用并且将不再继续开发;开发将转至 argparse
模块进行。
optparse
是一个相比原有 getopt
模块更为方便、灵活和强大的命令行选项解析库。 optparse
使用更为显明的命令行解析风格:创建一个 OptionParser
的实例,向其中填充选项,然后解析命令行。 optparse
允许用户以传统的 GNU/POSIX 语法来指定选项,并为你生成额外的用法和帮助消息。
下面是在一个简单脚本中使用 optparse
的示例:
fromoptparseimportOptionParser...
parser=OptionParser()
parser.add_option("-f","--file",dest="filename",
help="write report to FILE",metavar="FILE")
parser.add_option("-q","--quiet",
action="store_false",dest="verbose",default=True,
help="don't print status messages to stdout")
(options,args)=parser.parse_args()
With these few lines of code, users of your script can now do the "usual thing"
on the command-line, for example:
<yourscript>--file=outfile-q
As it parses the command line, optparse
sets attributes of the
options
object returned by parse_args()
based on user-supplied
command-line values. When parse_args()
returns from parsing this command
line, options.filename
will be "outfile"
and options.verbose
will be
False
. optparse
supports both long and short options, allows short
options to be merged together, and allows options to be associated with their
arguments in a variety of ways. Thus, the following command lines are all
equivalent to the above example:
<yourscript>-foutfile--quiet<yourscript>--quiet--fileoutfile
<yourscript>-q-foutfile
<yourscript>-qfoutfile
Additionally, users can run one of
<yourscript>-h<yourscript>--help
and optparse
will print out a brief summary of your script's options:
Usage: <yourscript> [options]Options:
-h, --help show this help message and exit
-f FILE, --file=FILE write report to FILE
-q, --quiet don't print status messages to stdout
where the value of yourscript is determined at runtime (normally from
sys.argv[0]
).
背景¶
optparse
was explicitly designed to encourage the creation of programs
with straightforward, conventional command-line interfaces. To that end, it
supports only the most common command-line syntax and semantics conventionally
used under Unix. If you are unfamiliar with these conventions, read this
section to acquaint yourself with them.
术语¶
- argument -- 参数
a string entered on the command-line, and passed by the shell to
execl()
or
execv()
. In Python, arguments are elements ofsys.argv[1:]
(
sys.argv[0]
is the name of the program being executed). Unix shellsalso use the term "word".
It is occasionally desirable to substitute an argument list other than
sys.argv[1:]
, so you should read "argument" as "an element ofsys.argv[1:]
, or of some other list provided as a substitute forsys.argv[1:]
".- 选项
an argument used to supply extra information to guide or customize the
execution of a program. There are many different syntaxes for options; the
traditional Unix syntax is a hyphen ("-") followed by a single letter,
e.g.
-x
or-F
. Also, traditional Unix syntax allows multipleoptions to be merged into a single argument, e.g.
-x-F
is equivalentto
-xF
. The GNU project introduced--
followed by a series ofhyphen-separated words, e.g.
--file
or--dry-run
. These are theonly two option syntaxes provided by
optparse
.Some other option syntaxes that the world has seen include:
a hyphen followed by a few letters, e.g.
-pf
(this is not the sameas multiple options merged into a single argument)
a hyphen followed by a whole word, e.g.
-file
(this is technicallyequivalent to the previous syntax, but they aren't usually seen in the same
program)
a plus sign followed by a single letter, or a few letters, or a word, e.g.
+f
,+rgb
a slash followed by a letter, or a few letters, or a word, e.g.
/f
,/file
These option syntaxes are not supported by
optparse
, and they neverwill be. This is deliberate: the first three are non-standard on any
environment, and the last only makes sense if you're exclusively targeting
VMS, MS-DOS, and/or Windows.
- 可选参数:
an argument that follows an option, is closely associated with that option,
and is consumed from the argument list when that option is. With
optparse
, option arguments may either be in a separate argument fromtheir option:
-f foo
--file foo
or included in the same argument:
-ffoo
--file=foo
Typically, a given option either takes an argument or it doesn't. Lots of
people want an "optional option arguments" feature, meaning that some options
will take an argument if they see it, and won't if they don't. This is
somewhat controversial, because it makes parsing ambiguous: if
-a
takesan optional argument and
-b
is another option entirely, how do weinterpret
-ab
? Because of this ambiguity,optparse
does notsupport this feature.
- positional argument -- 位置参数
something leftover in the argument list after options have been parsed, i.e.
after options and their arguments have been parsed and removed from the
argument list.
- 必选选项
an option that must be supplied on the command-line; note that the phrase
"required option" is self-contradictory in English.
optparse
doesn'tprevent you from implementing required options, but doesn't give you much
help at it either.
For example, consider this hypothetical command-line:
prog-v--reportreport.txtfoobar
-v
and --report
are both options. Assuming that --report
takes one argument, report.txt
is an option argument. foo
and
bar
are positional arguments.
What are options for?¶
Options are used to provide extra information to tune or customize the execution
of a program. In case it wasn't clear, options are usually optional. A
program should be able to run just fine with no options whatsoever. (Pick a
random program from the Unix or GNU toolsets. Can it run without any options at
all and still make sense? The main exceptions are find
, tar
, and
dd
---all of which are mutant oddballs that have been rightly criticized
for their non-standard syntax and confusing interfaces.)
Lots of people want their programs to have "required options". Think about it.
If it's required, then it's not optional! If there is a piece of information
that your program absolutely requires in order to run successfully, that's what
positional arguments are for.
As an example of good command-line interface design, consider the humble cp
utility, for copying files. It doesn't make much sense to try to copy files
without supplying a destination and at least one source. Hence, cp
fails if
you run it with no arguments. However, it has a flexible, useful syntax that
does not require any options at all:
cpSOURCEDESTcpSOURCE...DEST-DIR
You can get pretty far with just that. Most cp
implementations provide a
bunch of options to tweak exactly how the files are copied: you can preserve
mode and modification time, avoid following symlinks, ask before clobbering
existing files, etc. But none of this distracts from the core mission of
cp
, which is to copy either one file to another, or several files to another
directory.
位置位置¶
Positional arguments are for those pieces of information that your program
absolutely, positively requires to run.
A good user interface should have as few absolute requirements as possible. If
your program requires 17 distinct pieces of information in order to run
successfully, it doesn't much matter how you get that information from the
user---most people will give up and walk away before they successfully run the
program. This applies whether the user interface is a command-line, a
configuration file, or a GUI: if you make that many demands on your users, most
of them will simply give up.
In short, try to minimize the amount of information that users are absolutely
required to supply---use sensible defaults whenever possible. Of course, you
also want to make your programs reasonably flexible. That's what options are
for. Again, it doesn't matter if they are entries in a config file, widgets in
the "Preferences" dialog of a GUI, or command-line options---the more options
you implement, the more flexible your program is, and the more complicated its
implementation becomes. Too much flexibility has drawbacks as well, of course;
too many options can overwhelm users and make your code much harder to maintain.
教程¶
While optparse
is quite flexible and powerful, it's also straightforward
to use in most cases. This section covers the code patterns that are common to
any optparse
-based program.
First, you need to import the OptionParser class; then, early in the main
program, create an OptionParser instance:
fromoptparseimportOptionParser...
parser=OptionParser()
Then you can start defining options. The basic syntax is:
parser.add_option(opt_str,...,attr=value,...)
Each option has one or more option strings, such as -f
or --file
,
and several option attributes that tell optparse
what to expect and what
to do when it encounters that option on the command line.
Typically, each option will have one short option string and one long option
string, e.g.:
parser.add_option("-f","--file",...)
You're free to define as many short option strings and as many long option
strings as you like (including zero), as long as there is at least one option
string overall.
The option strings passed to OptionParser.add_option()
are effectively
labels for the
option defined by that call. For brevity, we will frequently refer to
encountering an option on the command line; in reality, optparse
encounters option strings and looks up options from them.
Once all of your options are defined, instruct optparse
to parse your
program's command line:
(options,args)=parser.parse_args()
(If you like, you can pass a custom argument list to parse_args()
, but
that's rarely necessary: by default it uses sys.argv[1:]
.)
parse_args()
返回两个值:
options
, an object containing values for all of your options---e.g. if--file
takes a single string argument, thenoptions.file
will be thefilename supplied by the user, or
None
if the user did not supply thatoption
args
, the list of positional arguments leftover after parsing options
This tutorial section only covers the four most important option attributes:
action
, type
, dest
(destination), and help
. Of these, action
is the
most fundamental.
Understanding option actions¶
Actions tell optparse
what to do when it encounters an option on the
command line. There is a fixed set of actions hard-coded into optparse
;
adding new actions is an advanced topic covered in section
Extending optparse. Most actions tell optparse
to store
a value in some variable---for example, take a string from the command line and
store it in an attribute of options
.
If you don't specify an option action, optparse
defaults to store
.
The store action¶
The most common option action is store
, which tells optparse
to take
the next argument (or the remainder of the current argument), ensure that it is
of the correct type, and store it to your chosen destination.
例如
parser.add_option("-f","--file",action="store",type="string",dest="filename")
Now let's make up a fake command line and ask optparse
to parse it:
args=["-f","foo.txt"](options,args)=parser.parse_args(args)
When optparse
sees the option string -f
, it consumes the next
argument, foo.txt
, and stores it in options.filename
. So, after this
call to parse_args()
, options.filename
is "foo.txt"
.
Some other option types supported by optparse
are int
and float
.
Here's an option that expects an integer argument:
parser.add_option("-n",type="int",dest="num")
Note that this option has no long option string, which is perfectly acceptable.
Also, there's no explicit action, since the default is store
.
Let's parse another fake command-line. This time, we'll jam the option argument
right up against the option: since -n42
(one argument) is equivalent to
-n42
(two arguments), the code
(options,args)=parser.parse_args(["-n42"])print(options.num)
will print 42
.
If you don't specify a type, optparse
assumes string
. Combined with
the fact that the default action is store
, that means our first example can
be a lot shorter:
parser.add_option("-f","--file",dest="filename")
If you don't supply a destination, optparse
figures out a sensible
default from the option strings: if the first long option string is
--foo-bar
, then the default destination is foo_bar
. If there are no
long option strings, optparse
looks at the first short option string: the
default destination for -f
is f
.
optparse
also includes the built-in complex
type. Adding
types is covered in section Extending optparse.
Handling boolean (flag) options¶
Flag options---set a variable to true or false when a particular option is
seen---are quite common. optparse
supports them with two separate actions,
store_true
and store_false
. For example, you might have a verbose
flag that is turned on with -v
and off with -q
:
parser.add_option("-v",action="store_true",dest="verbose")parser.add_option("-q",action="store_false",dest="verbose")
Here we have two different options with the same destination, which is perfectly
OK. (It just means you have to be a bit careful when setting default
values---see below.)
When optparse
encounters -v
on the command line, it sets
options.verbose
to True
; when it encounters -q
,
options.verbose
is set to False
.
Other actions¶
Some other actions supported by optparse
are:
"store_const"
store a constant value
"append"
append this option's argument to a list
"count"
increment a counter by one
"callback"
调用指定函数
These are covered in section 参考指南, Reference Guide
and section Option Callbacks.
默认值¶
All of the above examples involve setting some variable (the "destination") when
certain command-line options are seen. What happens if those options are never
seen? Since we didn't supply any defaults, they are all set to None
. This
is usually fine, but sometimes you want more control. optparse
lets you
supply a default value for each destination, which is assigned before the
command line is parsed.
First, consider the verbose/quiet example. If we want optparse
to set
verbose
to True
unless -q
is seen, then we can do this:
parser.add_option("-v",action="store_true",dest="verbose",default=True)parser.add_option("-q",action="store_false",dest="verbose")
Since default values apply to the destination rather than to any particular
option, and these two options happen to have the same destination, this is
exactly equivalent:
parser.add_option("-v",action="store_true",dest="verbose")parser.add_option("-q",action="store_false",dest="verbose",default=True)
考虑一下:
parser.add_option("-v",action="store_true",dest="verbose",default=False)parser.add_option("-q",action="store_false",dest="verbose",default=True)
Again, the default value for verbose
will be True
: the last default
value supplied for any particular destination is the one that counts.
A clearer way to specify default values is the set_defaults()
method of
OptionParser, which you can call at any time before calling parse_args()
:
parser.set_defaults(verbose=True)parser.add_option(...)
(options,args)=parser.parse_args()
As before, the last value specified for a given option destination is the one
that counts. For clarity, try to use one method or the other of setting default
values, not both.
Generating help¶
optparse
's ability to generate help and usage text automatically is
useful for creating user-friendly command-line interfaces. All you have to do
is supply a help
value for each option, and optionally a short
usage message for your whole program. Here's an OptionParser populated with
user-friendly (documented) options:
usage="usage: %prog [options] arg1 arg2"parser=OptionParser(usage=usage)
parser.add_option("-v","--verbose",
action="store_true",dest="verbose",default=True,
help="make lots of noise [default]")
parser.add_option("-q","--quiet",
action="store_false",dest="verbose",
help="be vewwy quiet (I'm hunting wabbits)")
parser.add_option("-f","--filename",
metavar="FILE",help="write output to FILE")
parser.add_option("-m","--mode",
default="intermediate",
help="interaction mode: novice, intermediate, "
"or expert [default: %default]")
If optparse
encounters either -h
or --help
on the
command-line, or if you just call parser.print_help()
, it prints the
following to standard output:
Usage: <yourscript> [options] arg1 arg2Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)
-f FILE, --filename=FILE
write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or
expert [default: intermediate]
(If the help output is triggered by a help option, optparse
exits after
printing the help text.)
There's a lot going on here to help optparse
generate the best possible
help message:
the script defines its own usage message:
usage="usage: %prog [options] arg1 arg2"
optparse
expands%prog
in the usage string to the name of thecurrent program, i.e.
os.path.basename(sys.argv[0])
. The expanded stringis then printed before the detailed option help.
If you don't supply a usage string,
optparse
uses a bland but sensibledefault:
"Usage:%prog[options]"
, which is fine if your script doesn'ttake any positional arguments.
every option defines a help string, and doesn't worry about
line-wrapping---
optparse
takes care of wrapping lines and makingthe help output look good.
options that take a value indicate this fact in their automatically-generated
help message, e.g. for the "mode" option:
-mMODE,--mode=MODE
Here, "MODE" is called the meta-variable: it stands for the argument that the
user is expected to supply to
-m
/--mode
. By default,optparse
converts the destination variable name to uppercase and usesthat for the meta-variable. Sometimes, that's not what you want---for
example, the
--filename
option explicitly setsmetavar="FILE"
,resulting in this automatically-generated option description:
-fFILE,--filename=FILE
This is important for more than just saving space, though: the manually
written help text uses the meta-variable
FILE
to clue the user in thatthere's a connection between the semi-formal syntax
-fFILE
and the informalsemantic description "write output to FILE". This is a simple but effective
way to make your help text a lot clearer and more useful for end users.
options that have a default value can include
%default
in the helpstring---
optparse
will replace it withstr()
of the option'sdefault value. If an option has no default value (or the default value is
None
),%default
expands tonone
.
Grouping Options¶
When dealing with many options, it is convenient to group these options for
better help output. An OptionParser
can contain several option groups,
each of which can contain several options.
An option group is obtained using the class OptionGroup
:
class
optparse.
OptionGroup
(parser, title, description=None)¶where
parser is the
OptionParser
instance the group will be inserted into
title is the group title
description, optional, is a long description of the group
OptionGroup
inherits from OptionContainer
(like
OptionParser
) and so the add_option()
method can be used to add
an option to the group.
Once all the options are declared, using the OptionParser
method
add_option_group()
the group is added to the previously defined parser.
Continuing with the parser defined in the previous section, adding an
OptionGroup
to a parser is easy:
group=OptionGroup(parser,"Dangerous Options","Caution: use these options at your own risk. "
"It is believed that some of them bite.")
group.add_option("-g",action="store_true",help="Group option.")
parser.add_option_group(group)
This would result in the following help output:
Usage: <yourscript> [options] arg1 arg2Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)
-f FILE, --filename=FILE
write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or
expert [default: intermediate]
Dangerous Options:
Caution: use these options at your own risk. It is believed that some
of them bite.
-g Group option.
A bit more complete example might involve using more than one group: still
extending the previous example:
group=OptionGroup(parser,"Dangerous Options","Caution: use these options at your own risk. "
"It is believed that some of them bite.")
group.add_option("-g",action="store_true",help="Group option.")
parser.add_option_group(group)
group=OptionGroup(parser,"Debug Options")
group.add_option("-d","--debug",action="store_true",
help="Print debug information")
group.add_option("-s","--sql",action="store_true",
help="Print all SQL statements executed")
group.add_option("-e",action="store_true",help="Print every action done")
parser.add_option_group(group)
that results in the following output:
Usage: <yourscript> [options] arg1 arg2Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)
-f FILE, --filename=FILE
write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or expert
[default: intermediate]
Dangerous Options:
Caution: use these options at your own risk. It is believed that some
of them bite.
-g Group option.
Debug Options:
-d, --debug Print debug information
-s, --sql Print all SQL statements executed
-e Print every action done
Another interesting method, in particular when working programmatically with
option groups is:
OptionParser.
get_option_group
(opt_str)¶Return the
OptionGroup
to which the short or long optionstring opt_str (e.g.
'-o'
or'--option'
) belongs. Ifthere's no such
OptionGroup
, returnNone
.
Printing a version string¶
Similar to the brief usage string, optparse
can also print a version
string for your program. You have to supply the string as the version
argument to OptionParser:
parser=OptionParser(usage="%prog [-f] [-q]",version="%prog 1.0")
%prog
is expanded just like it is in usage
. Apart from that,
version
can contain anything you like. When you supply it, optparse
automatically adds a --version
option to your parser. If it encounters
this option on the command line, it expands your version
string (by
replacing %prog
), prints it to stdout, and exits.
For example, if your script is called /usr/bin/foo
:
$ /usr/bin/foo --versionfoo 1.0
The following two methods can be used to print and get the version
string:
OptionParser.
print_version
(file=None)¶Print the version message for the current program (
self.version
) tofile (default stdout). As with
print_usage()
, any occurrenceof
%prog
inself.version
is replaced with the name of the currentprogram. Does nothing if
self.version
is empty or undefined.
OptionParser.
get_version
()¶Same as
print_version()
but returns the version string instead ofprinting it.
How optparse
handles errors¶
There are two broad classes of errors that optparse
has to worry about:
programmer errors and user errors. Programmer errors are usually erroneous
calls to OptionParser.add_option()
, e.g. invalid option strings, unknown
option attributes, missing option attributes, etc. These are dealt with in the
usual way: raise an exception (either optparse.OptionError
or
TypeError
) and let the program crash.
Handling user errors is much more important, since they are guaranteed to happen
no matter how stable your code is. optparse
can automatically detect
some user errors, such as bad option arguments (passing -n4x
where
-n
takes an integer argument), missing arguments (-n
at the end
of the command line, where -n
takes an argument of any type). Also,
you can call OptionParser.error()
to signal an application-defined error
condition:
(options,args)=parser.parse_args()...
ifoptions.aandoptions.b:
parser.error("options -a and -b are mutually exclusive")
In either case, optparse
handles the error the same way: it prints the
program's usage message and an error message to standard error and exits with
error status 2.
Consider the first example above, where the user passes 4x
to an option
that takes an integer:
$ /usr/bin/foo -n 4xUsage: foo [options]
foo: error: option -n: invalid integer value: '4x'
Or, where the user fails to pass a value at all:
$ /usr/bin/foo -nUsage: foo [options]
foo: error: -n option requires an argument
optparse
-generated error messages take care always to mention the
option involved in the error; be sure to do the same when calling
OptionParser.error()
from your application code.
If optparse
's default error-handling behaviour does not suit your needs,
you'll need to subclass OptionParser and override its exit()
and/or error()
methods.
Putting it all together¶
Here's what optparse
-based scripts usually look like:
fromoptparseimportOptionParser...
defmain():
usage="usage: %prog [options] arg"
parser=OptionParser(usage)
parser.add_option("-f","--file",dest="filename",
help="read data from FILENAME")
parser.add_option("-v","--verbose",
action="store_true",dest="verbose")
parser.add_option("-q","--quiet",
action="store_false",dest="verbose")
...
(options,args)=parser.parse_args()
iflen(args)!=1:
parser.error("incorrect number of arguments")
ifoptions.verbose:
print("reading %s..."%options.filename)
...
if__name__=="__main__":
main()
参考指南¶
创建解析器¶
The first step in using optparse
is to create an OptionParser instance.
class
optparse.
OptionParser
(...)¶The OptionParser constructor has no required arguments, but a number of
optional keyword arguments. You should always pass them as keyword
arguments, i.e. do not rely on the order in which the arguments are declared.
usage
(默认:"%prog[options]"
)The usage summary to print when your program is run incorrectly or with a
help option. When
optparse
prints the usage string, it expands%prog
toos.path.basename(sys.argv[0])
(or toprog
if youpassed that keyword argument). To suppress a usage message, pass the
special value
optparse.SUPPRESS_USAGE
.option_list
(默认:[]
)A list of Option objects to populate the parser with. The options in
option_list
are added after any options instandard_option_list
(aclass attribute that may be set by OptionParser subclasses), but before
any version or help options. Deprecated; use
add_option()
aftercreating the parser instead.
option_class
(默认: optparse.Option)Class to use when adding options to the parser in
add_option()
.version
(默认:None
)A version string to print when the user supplies a version option. If you
supply a true value for
version
,optparse
automatically adds aversion option with the single option string
--version
. Thesubstring
%prog
is expanded the same as forusage
.conflict_handler
(默认:"error"
)Specifies what to do when options with conflicting option strings are
added to the parser; see section
Conflicts between options.
description
(默认:None
)A paragraph of text giving a brief overview of your program.
optparse
reformats this paragraph to fit the current terminal widthand prints it when the user requests help (after
usage
, but before thelist of options).
formatter
(default: a newIndentedHelpFormatter
)An instance of optparse.HelpFormatter that will be used for printing help
text.
optparse
provides two concrete classes for this purpose:IndentedHelpFormatter and TitledHelpFormatter.
add_help_option
(默认:True
)If true,
optparse
will add a help option (with option strings-h
and
--help
) to the parser.prog
The string to use when expanding
%prog
inusage
andversion
instead of
os.path.basename(sys.argv[0])
.epilog
(默认:None
)A paragraph of help text to print after the option help.
填充解析器¶
There are several ways to populate the parser with options. The preferred way
is by using OptionParser.add_option()
, as shown in section
教程. add_option()
can be called in one of two ways:
pass it an Option instance (as returned by
make_option()
)pass it any combination of positional and keyword arguments that are
acceptable to
make_option()
(i.e., to the Option constructor), and itwill create the Option instance for you
The other alternative is to pass a list of pre-constructed Option instances to
the OptionParser constructor, as in:
option_list=[make_option("-f","--filename",
action="store",type="string",dest="filename"),
make_option("-q","--quiet",
action="store_false",dest="verbose"),
]
parser=OptionParser(option_list=option_list)
(make_option()
is a factory function for creating Option instances;
currently it is an alias for the Option constructor. A future version of
optparse
may split Option into several classes, and make_option()
will pick the right class to instantiate. Do not instantiate Option directly.)
定义选项¶
Each Option instance represents a set of synonymous command-line option strings,
e.g. -f
and --file
. You can specify any number of short or
long option strings, but you must specify at least one overall option string.
The canonical way to create an Option
instance is with the
add_option()
method of OptionParser
.
OptionParser.
add_option
(option)¶OptionParser.
add_option
(*opt_str, attr=value, ...)To define an option with only a short option string:
parser.add_option("-f",attr=value,...)
And to define an option with only a long option string:
parser.add_option("--foo",attr=value,...)
The keyword arguments define attributes of the new Option object. The most
important option attribute is
action
, and it largelydetermines which other attributes are relevant or required. If you pass
irrelevant option attributes, or fail to pass required ones,
optparse
raises an
OptionError
exception explaining your mistake.An option's action determines what
optparse
does when it encountersthis option on the command-line. The standard option actions hard-coded into
optparse
are:"store"
存储此选项的参数(默认)
"store_const"
store a constant value
"store_true"
store
True
"store_false"
store
False
"append"
append this option's argument to a list
"append_const"
将常量值附加到列表
"count"
increment a counter by one
"callback"
调用指定函数
"help"
打印用法消息,包括所有选项和文档
(If you don't supply an action, the default is
"store"
. For this action,you may also supply
type
anddest
optionattributes; see Standard option actions.)
As you can see, most actions involve storing or updating a value somewhere.
optparse
always creates a special object for this, conventionally called
options
(it happens to be an instance of optparse.Values
). Option
arguments (and various other values) are stored as attributes of this object,
according to the dest
(destination) option attribute.
For example, when you call
parser.parse_args()
one of the first things optparse
does is create the options
object:
options=Values()
If one of the options in this parser is defined with
parser.add_option("-f","--file",action="store",type="string",dest="filename")
and the command-line being parsed includes any of the following:
-ffoo-ffoo
--file=foo
--filefoo
then optparse
, on seeing this option, will do the equivalent of
options.filename="foo"
The type
and dest
option attributes are almost
as important as action
, but action
is the only
one that makes sense for all options.
Option attributes¶
The following option attributes may be passed as keyword arguments to
OptionParser.add_option()
. If you pass an option attribute that is not
relevant to a particular option, or fail to pass a required option attribute,
optparse
raises OptionError
.
Option.
action
¶(默认:
"store"
)Determines
optparse
's behaviour when this option is seen on thecommand line; the available options are documented here.
Option.
type
¶(默认:
"string"
)The argument type expected by this option (e.g.,
"string"
or"int"
);the available option types are documented here.
Option.
dest
¶(default: derived from option strings)
If the option's action implies writing or modifying a value somewhere, this
tells
optparse
where to write it:dest
names anattribute of the
options
object thatoptparse
builds as it parsesthe command line.
Option.
default
¶The value to use for this option's destination if the option is not seen on
the command line. See also
OptionParser.set_defaults()
.
Option.
nargs
¶(默认: 1)
How many arguments of type
type
should be consumed when thisoption is seen. If > 1,
optparse
will store a tuple of values todest
.
Option.
const
¶For actions that store a constant value, the constant value to store.
Option.
choices
¶For options of type
"choice"
, the list of strings the user may choosefrom.
Option.
callback
¶For options with action
"callback"
, the callable to call when this optionis seen. See section Option Callbacks for detail on the
arguments passed to the callable.
Option.
callback_args
¶Option.
callback_kwargs
¶Additional positional and keyword arguments to pass to
callback
after thefour standard callback arguments.
Option.
help
¶Help text to print for this option when listing all available options after
the user supplies a
help
option (such as--help
). Ifno help text is supplied, the option will be listed without help text. To
hide this option, use the special value
optparse.SUPPRESS_HELP
.
Option.
metavar
¶(default: derived from option strings)
Stand-in for the option argument(s) to use when printing help text. See
section 教程 for an example.
Standard option actions¶
The various option actions all have slightly different requirements and effects.
Most actions have several relevant option attributes which you may specify to
guide optparse
's behaviour; a few have required attributes, which you
must specify for any option using that action.
"store"
[relevant:type
,dest
,nargs
,choices
]The option must be followed by an argument, which is converted to a value
according to
type
and stored indest
. Ifnargs
> 1, multiple arguments will be consumed from thecommand line; all will be converted according to
type
andstored to
dest
as a tuple. See theStandard option types section.
If
choices
is supplied (a list or tuple of strings), the typedefaults to
"choice"
.If
type
is not supplied, it defaults to"string"
.If
dest
is not supplied,optparse
derives a destinationfrom the first long option string (e.g.,
--foo-bar
impliesfoo_bar
). If there are no long option strings,optparse
derives adestination from the first short option string (e.g.,
-f
impliesf
).示例:
parser.add_option("-f")
parser.add_option("-p",type="float",nargs=3,dest="point")
As it parses the command line
-ffoo.txt-p1-3.54-fbar.txt
optparse
will setoptions.f="foo.txt"
options.point=(1.0,-3.5,4.0)
options.f="bar.txt"
"store_const"
[required:const
; relevant:dest
]The value
const
is stored indest
.示例:
parser.add_option("-q","--quiet",
action="store_const",const=0,dest="verbose")
parser.add_option("-v","--verbose",
action="store_const",const=1,dest="verbose")
parser.add_option("--noisy",
action="store_const",const=2,dest="verbose")
If
--noisy
is seen,optparse
will setoptions.verbose=2
"store_true"
[relevant:dest
]A special case of
"store_const"
that storesTrue
todest
."store_false"
[relevant:dest
]Like
"store_true"
, but storesFalse
.示例:
parser.add_option("--clobber",action="store_true",dest="clobber")
parser.add_option("--no-clobber",action="store_false",dest="clobber")
"append"
[relevant:type
,dest
,nargs
,choices
]The option must be followed by an argument, which is appended to the list in
dest
. If no default value fordest
issupplied, an empty list is automatically created when
optparse
firstencounters this option on the command-line. If
nargs
> 1,multiple arguments are consumed, and a tuple of length
nargs
is appended to
dest
.The defaults for
type
anddest
are the same asfor the
"store"
action.示例:
parser.add_option("-t","--tracks",action="append",type="int")
If
-t3
is seen on the command-line,optparse
does the equivalentof:
options.tracks=[]
options.tracks.append(int("3"))
If, a little later on,
--tracks=4
is seen, it does:options.tracks.append(int("4"))
The
append
action calls theappend
method on the current value of theoption. This means that any default value specified must have an
append
method. It also means that if the default value is non-empty, the default
elements will be present in the parsed value for the option, with any values
from the command line appended after those default values:
>>> parser.add_option("--files",action="append",default=['~/.mypkg/defaults'])
>>> opts,args=parser.parse_args(['--files','overrides.mypkg'])
>>> opts.files
['~/.mypkg/defaults', 'overrides.mypkg']
"append_const"
[required:const
; relevant:dest
]Like
"store_const"
, but the valueconst
is appended todest
; as with"append"
,dest
defaults toNone
, and an empty list is automatically created the first time the optionis encountered.
"count"
[relevant:dest
]Increment the integer stored at
dest
. If no default value issupplied,
dest
is set to zero before being incremented thefirst time.
示例:
parser.add_option("-v",action="count",dest="verbosity")
The first time
-v
is seen on the command line,optparse
does theequivalent of:
options.verbosity=0
options.verbosity+=1
Every subsequent occurrence of
-v
results inoptions.verbosity+=1
"callback"
[required:callback
; relevant:type
,nargs
,callback_args
,callback_kwargs
]Call the function specified by
callback
, which is called asfunc(option,opt_str,value,parser,*args,**kwargs)
See section Option Callbacks for more detail.
"help"
Prints a complete help message for all the options in the current option
parser. The help message is constructed from the
usage
string passed toOptionParser's constructor and the
help
string passed to everyoption.
If no
help
string is supplied for an option, it will still belisted in the help message. To omit an option entirely, use the special value
optparse.SUPPRESS_HELP
.optparse
automatically adds ahelp
option to allOptionParsers, so you do not normally need to create one.
示例:
fromoptparseimportOptionParser,SUPPRESS_HELP
# usually, a help option is added automatically, but that can
# be suppressed using the add_help_option argument
parser=OptionParser(add_help_option=False)
parser.add_option("-h","--help",action="help")
parser.add_option("-v",action="store_true",dest="verbose",
help="Be moderately verbose")
parser.add_option("--file",dest="filename",
help="Input file to read data from")
parser.add_option("--secret",help=SUPPRESS_HELP)
If
optparse
sees either-h
or--help
on the command line,it will print something like the following help message to stdout (assuming
sys.argv[0]
is"foo.py"
):Usage: foo.py [options]
Options:
-h, --help Show this help message and exit
-v Be moderately verbose
--file=FILENAME Input file to read data from
After printing the help message,
optparse
terminates your process withsys.exit(0)
."version"
Prints the version number supplied to the OptionParser to stdout and exits.
The version number is actually formatted and printed by the
print_version()
method of OptionParser. Generally only relevant if theversion
argument is supplied to the OptionParser constructor. As withhelp
options, you will rarely createversion
options,since
optparse
automatically adds them when needed.
Standard option types¶
optparse
has five built-in option types: "string"
, "int"
,
"choice"
, "float"
and "complex"
. If you need to add new
option types, see section Extending optparse.
Arguments to string options are not checked or converted in any way: the text on
the command line is stored in the destination (or passed to the callback) as-is.
Integer arguments (type "int"
) are parsed as follows:
if the number starts with
0x
, it is parsed as a hexadecimal numberif the number starts with
0
, it is parsed as an octal numberif the number starts with
0b
, it is parsed as a binary numberotherwise, the number is parsed as a decimal number
The conversion is done by calling int()
with the appropriate base (2, 8,
10, or 16). If this fails, so will optparse
, although with a more useful
error message.
"float"
and "complex"
option arguments are converted directly with
float()
and complex()
, with similar error-handling.
"choice"
options are a subtype of "string"
options. The
choices
option attribute (a sequence of strings) defines the
set of allowed option arguments. optparse.check_choice()
compares
user-supplied option arguments against this master list and raises
OptionValueError
if an invalid string is given.
解析参数¶
The whole point of creating and populating an OptionParser is to call its
parse_args()
method:
(options,args)=parser.parse_args(args=None,values=None)
输入参数的位置
args
the list of arguments to process (default:
sys.argv[1:]
)values
an
optparse.Values
object to store option arguments in (default: anew instance of
Values
) -- if you give an existing object, theoption defaults will not be initialized on it
and the return values are
options
the same object that was passed in as
values
, or the optparse.Valuesinstance created by
optparse
args
the leftover positional arguments after all options have been processed
The most common usage is to supply neither keyword argument. If you supply
values
, it will be modified with repeated setattr()
calls (roughly one
for every option argument stored to an option destination) and returned by
parse_args()
.
If parse_args()
encounters any errors in the argument list, it calls the
OptionParser's error()
method with an appropriate end-user error message.
This ultimately terminates your process with an exit status of 2 (the
traditional Unix exit status for command-line errors).
Querying and manipulating your option parser¶
The default behavior of the option parser can be customized slightly, and you
can also poke around your option parser and see what's there. OptionParser
provides several methods to help you out:
OptionParser.
disable_interspersed_args
()¶Set parsing to stop on the first non-option. For example, if
-a
and-b
are both simple options that take no arguments,optparse
normally accepts this syntax:
prog-aarg1-barg2
and treats it as equivalent to
prog-a-barg1arg2
To disable this feature, call
disable_interspersed_args()
. Thisrestores traditional Unix syntax, where option parsing stops with the first
non-option argument.
Use this if you have a command processor which runs another command which has
options of its own and you want to make sure these options don't get
confused. For example, each command might have a different set of options.
OptionParser.
enable_interspersed_args
()¶Set parsing to not stop on the first non-option, allowing interspersing
switches with command arguments. This is the default behavior.
OptionParser.
get_option
(opt_str)¶Returns the Option instance with the option string opt_str, or
None
ifno options have that option string.
OptionParser.
has_option
(opt_str)¶Return
True
if the OptionParser has an option with option string opt_str(e.g.,
-q
or--verbose
).
OptionParser.
remove_option
(opt_str)¶If the
OptionParser
has an option corresponding to opt_str, thatoption is removed. If that option provided any other option strings, all of
those option strings become invalid. If opt_str does not occur in any
option belonging to this
OptionParser
, raisesValueError
.
Conflicts between options¶
If you're not careful, it's easy to define options with conflicting option
strings:
parser.add_option("-n","--dry-run",...)...
parser.add_option("-n","--noisy",...)
(This is particularly true if you've defined your own OptionParser subclass with
some standard options.)
Every time you add an option, optparse
checks for conflicts with existing
options. If it finds any, it invokes the current conflict-handling mechanism.
You can set the conflict-handling mechanism either in the constructor:
parser=OptionParser(...,conflict_handler=handler)
or with a separate call:
parser.set_conflict_handler(handler)
The available conflict handlers are:
"error"
(默认)assume option conflicts are a programming error and raise
OptionConflictError
"resolve"
resolve option conflicts intelligently (see below)
As an example, let's define an OptionParser
that resolves conflicts
intelligently and add conflicting options to it:
parser=OptionParser(conflict_handler="resolve")parser.add_option("-n","--dry-run",...,help="do no harm")
parser.add_option("-n","--noisy",...,help="be noisy")
At this point, optparse
detects that a previously-added option is already
using the -n
option string. Since conflict_handler
is "resolve"
,
it resolves the situation by removing -n
from the earlier option's list of
option strings. Now --dry-run
is the only way for the user to activate
that option. If the user asks for help, the help message will reflect that:
Options:--dry-rundonoharm
...
-n,--noisybenoisy
It's possible to whittle away the option strings for a previously-added option
until there are none left, and the user has no way of invoking that option from
the command-line. In that case, optparse
removes that option completely,
so it doesn't show up in help text or anywhere else. Carrying on with our
existing OptionParser:
parser.add_option("--dry-run",...,help="new dry-run option")
At this point, the original -n
/--dry-run
option is no longer
accessible, so optparse
removes it, leaving this help text:
Options:...
-n,--noisybenoisy
--dry-runnewdry-runoption
清理¶
OptionParser instances have several cyclic references. This should not be a
problem for Python's garbage collector, but you may wish to break the cyclic
references explicitly by calling destroy()
on your
OptionParser once you are done with it. This is particularly useful in
long-running applications where large object graphs are reachable from your
OptionParser.
Other methods¶
OptionParser supports several other public methods:
OptionParser.
set_usage
(usage)¶Set the usage string according to the rules described above for the
usage
constructor keyword argument. Passing
None
sets the default usagestring; use
optparse.SUPPRESS_USAGE
to suppress a usage message.
OptionParser.
print_usage
(file=None)¶Print the usage message for the current program (
self.usage
) to file(default stdout). Any occurrence of the string
%prog
inself.usage
is replaced with the name of the current program. Does nothing if
self.usage
is empty or not defined.
OptionParser.
get_usage
()¶Same as
print_usage()
but returns the usage string instead ofprinting it.
OptionParser.
set_defaults
(dest=value, ...)¶Set default values for several option destinations at once. Using
set_defaults()
is the preferred way to set default values for options,since multiple options can share the same destination. For example, if
several "mode" options all set the same destination, any one of them can set
the default, and the last one wins:
parser.add_option("--advanced",action="store_const",
dest="mode",const="advanced",
default="novice")# overridden below
parser.add_option("--novice",action="store_const",
dest="mode",const="novice",
default="advanced")# overrides above setting
To avoid this confusion, use
set_defaults()
:parser.set_defaults(mode="advanced")
parser.add_option("--advanced",action="store_const",
dest="mode",const="advanced")
parser.add_option("--novice",action="store_const",
dest="mode",const="novice")
Option Callbacks¶
When optparse
's built-in actions and types aren't quite enough for your
needs, you have two choices: extend optparse
or define a callback option.
Extending optparse
is more general, but overkill for a lot of simple
cases. Quite often a simple callback is all you need.
There are two steps to defining a callback option:
define the option itself using the
"callback"
actionwrite the callback; this is a function (or method) that takes at least four
arguments, as described below
Defining a callback option¶
As always, the easiest way to define a callback option is by using the
OptionParser.add_option()
method. Apart from action
, the
only option attribute you must specify is callback
, the function to call:
parser.add_option("-c",action="callback",callback=my_callback)
callback
is a function (or other callable object), so you must have already
defined my_callback()
when you create this callback option. In this simple
case, optparse
doesn't even know if -c
takes any arguments,
which usually means that the option takes no arguments---the mere presence of
-c
on the command-line is all it needs to know. In some
circumstances, though, you might want your callback to consume an arbitrary
number of command-line arguments. This is where writing callbacks gets tricky;
it's covered later in this section.
optparse
always passes four particular arguments to your callback, and it
will only pass additional arguments if you specify them via
callback_args
and callback_kwargs
. Thus, the
minimal callback function signature is:
defmy_callback(option,opt,value,parser):
The four arguments to a callback are described below.
There are several other option attributes that you can supply when you define a
callback option:
type
has its usual meaning: as with the
"store"
or"append"
actions, itinstructs
optparse
to consume one argument and convert it totype
. Rather than storing the converted value(s) anywhere,though,
optparse
passes it to your callback function.nargs
also has its usual meaning: if it is supplied and > 1,
optparse
willconsume
nargs
arguments, each of which must be convertible totype
. It then passes a tuple of converted values to yourcallback.
callback_args
a tuple of extra positional arguments to pass to the callback
callback_kwargs
a dictionary of extra keyword arguments to pass to the callback
How callbacks are called¶
All callbacks are called as follows:
func(option,opt_str,value,parser,*args,**kwargs)
where
option
is the Option instance that's calling the callback
opt_str
is the option string seen on the command-line that's triggering the callback.
(If an abbreviated long option was used,
opt_str
will be the full,canonical option string---e.g. if the user puts
--foo
on thecommand-line as an abbreviation for
--foobar
, thenopt_str
will be"--foobar"
.)value
is the argument to this option seen on the command-line.
optparse
willonly expect an argument if
type
is set; the type ofvalue
will bethe type implied by the option's type. If
type
for this option isNone
(no argument expected), thenvalue
will beNone
. Ifnargs
> 1,
value
will be a tuple of values of the appropriate type.parser
is the OptionParser instance driving the whole thing, mainly useful because
you can access some other interesting data through its instance attributes:
parser.largs
the current list of leftover arguments, ie. arguments that have been
consumed but are neither options nor option arguments. Feel free to modify
parser.largs
, e.g. by adding more arguments to it. (This list willbecome
args
, the second return value ofparse_args()
.)parser.rargs
the current list of remaining arguments, ie. with
opt_str
andvalue
(if applicable) removed, and only the arguments following themstill there. Feel free to modify
parser.rargs
, e.g. by consuming morearguments.
parser.values
the object where option values are by default stored (an instance of
optparse.OptionValues). This lets callbacks use the same mechanism as the
rest of
optparse
for storing option values; you don't need to messaround with globals or closures. You can also access or modify the
value(s) of any options already encountered on the command-line.
args
is a tuple of arbitrary positional arguments supplied via the
callback_args
option attribute.kwargs
is a dictionary of arbitrary keyword arguments supplied via
callback_kwargs
.
Raising errors in a callback¶
The callback function should raise OptionValueError
if there are any
problems with the option or its argument(s). optparse
catches this and
terminates the program, printing the error message you supply to stderr. Your
message should be clear, concise, accurate, and mention the option at fault.
Otherwise, the user will have a hard time figuring out what they did wrong.
Callback example 1: trivial callback¶
Here's an example of a callback option that takes no arguments, and simply
records that the option was seen:
defrecord_foo_seen(option,opt_str,value,parser):parser.values.saw_foo=True
parser.add_option("--foo",action="callback",callback=record_foo_seen)
Of course, you could do that with the "store_true"
action.
Callback example 2: check option order¶
Here's a slightly more interesting example: record the fact that -a
is
seen, but blow up if it comes after -b
in the command-line.
defcheck_order(option,opt_str,value,parser):ifparser.values.b:
raiseOptionValueError("can't use -a after -b")
parser.values.a=1
...
parser.add_option("-a",action="callback",callback=check_order)
parser.add_option("-b",action="store_true",dest="b")
Callback example 3: check option order (generalized)¶
If you want to re-use this callback for several similar options (set a flag, but
blow up if -b
has already been seen), it needs a bit of work: the error
message and the flag that it sets must be generalized.
defcheck_order(option,opt_str,value,parser):ifparser.values.b:
raiseOptionValueError("can't use %s after -b"%opt_str)
setattr(parser.values,option.dest,1)
...
parser.add_option("-a",action="callback",callback=check_order,dest='a')
parser.add_option("-b",action="store_true",dest="b")
parser.add_option("-c",action="callback",callback=check_order,dest='c')
Callback example 4: check arbitrary condition¶
Of course, you could put any condition in there---you're not limited to checking
the values of already-defined options. For example, if you have options that
should not be called when the moon is full, all you have to do is this:
defcheck_moon(option,opt_str,value,parser):ifis_moon_full():
raiseOptionValueError("%s option invalid when moon is full"
%opt_str)
setattr(parser.values,option.dest,1)
...
parser.add_option("--foo",
action="callback",callback=check_moon,dest="foo")
(The definition of is_moon_full()
is left as an exercise for the reader.)
Callback example 5: fixed arguments¶
Things get slightly more interesting when you define callback options that take
a fixed number of arguments. Specifying that a callback option takes arguments
is similar to defining a "store"
or "append"
option: if you define
type
, then the option takes one argument that must be
convertible to that type; if you further define nargs
, then the
option takes nargs
arguments.
Here's an example that just emulates the standard "store"
action:
defstore_value(option,opt_str,value,parser):setattr(parser.values,option.dest,value)
...
parser.add_option("--foo",
action="callback",callback=store_value,
type="int",nargs=3,dest="foo")
Note that optparse
takes care of consuming 3 arguments and converting
them to integers for you; all you have to do is store them. (Or whatever;
obviously you don't need a callback for this example.)
Callback example 6: variable arguments¶
Things get hairy when you want an option to take a variable number of arguments.
For this case, you must write a callback, as optparse
doesn't provide any
built-in capabilities for it. And you have to deal with certain intricacies of
conventional Unix command-line parsing that optparse
normally handles for
you. In particular, callbacks should implement the conventional rules for bare
--
and -
arguments:
either
--
or-
can be option argumentsbare
--
(if not the argument to some option): halt command-lineprocessing and discard the
--
bare
-
(if not the argument to some option): halt command-lineprocessing but keep the
-
(append it toparser.largs
)
If you want an option that takes a variable number of arguments, there are
several subtle, tricky issues to worry about. The exact implementation you
choose will be based on which trade-offs you're willing to make for your
application (which is why optparse
doesn't support this sort of thing
directly).
Nevertheless, here's a stab at a callback for an option with variable
arguments:
defvararg_callback(option,opt_str,value,parser):assertvalueisNone
value=[]
deffloatable(str):
try:
float(str)
returnTrue
exceptValueError:
returnFalse
forarginparser.rargs:
# stop on --foo like options
ifarg[:2]=="--"andlen(arg)>2:
break
# stop on -a, but not on -3 or -3.0
ifarg[:1]=="-"andlen(arg)>1andnotfloatable(arg):
break
value.append(arg)
delparser.rargs[:len(value)]
setattr(parser.values,option.dest,value)
...
parser.add_option("-c","--callback",dest="vararg_attr",
action="callback",callback=vararg_callback)
Extending optparse
¶
Since the two major controlling factors in how optparse
interprets
command-line options are the action and type of each option, the most likely
direction of extension is to add new actions and new types.
Adding new types¶
To add new types, you need to define your own subclass of optparse
's
Option
class. This class has a couple of attributes that define
optparse
's types: TYPES
and TYPE_CHECKER
.
Option.
TYPES
¶A tuple of type names; in your subclass, simply define a new tuple
TYPES
that builds on the standard one.
Option.
TYPE_CHECKER
¶A dictionary mapping type names to type-checking functions. A type-checking
function has the following signature:
defcheck_mytype(option,opt,value)
where
option
is anOption
instance,opt
is an option string(e.g.,
-f
), andvalue
is the string from the command line that mustbe checked and converted to your desired type.
check_mytype()
shouldreturn an object of the hypothetical type
mytype
. The value returned bya type-checking function will wind up in the OptionValues instance returned
by
OptionParser.parse_args()
, or be passed to a callback as thevalue
parameter.Your type-checking function should raise
OptionValueError
if itencounters any problems.
OptionValueError
takes a single stringargument, which is passed as-is to
OptionParser
'serror()
method, which in turn prepends the program name and the string
"error:"
and prints everything to stderr before terminating the process.
Here's a silly example that demonstrates adding a "complex"
option type to
parse Python-style complex numbers on the command line. (This is even sillier
than it used to be, because optparse
1.3 added built-in support for
complex numbers, but never mind.)
First, the necessary imports:
fromcopyimportcopyfromoptparseimportOption,OptionValueError
You need to define your type-checker first, since it's referred to later (in the
TYPE_CHECKER
class attribute of your Option subclass):
defcheck_complex(option,opt,value):try:
returncomplex(value)
exceptValueError:
raiseOptionValueError(
"option %s: invalid complex value: %r"%(opt,value))
Finally, the Option subclass:
classMyOption(Option):TYPES=Option.TYPES+("complex",)
TYPE_CHECKER=copy(Option.TYPE_CHECKER)
TYPE_CHECKER["complex"]=check_complex
(If we didn't make a copy()
of Option.TYPE_CHECKER
, we would end
up modifying the TYPE_CHECKER
attribute of optparse
's
Option class. This being Python, nothing stops you from doing that except good
manners and common sense.)
That's it! Now you can write a script that uses the new option type just like
any other optparse
-based script, except you have to instruct your
OptionParser to use MyOption instead of Option:
parser=OptionParser(option_class=MyOption)parser.add_option("-c",type="complex")
Alternately, you can build your own option list and pass it to OptionParser; if
you don't use add_option()
in the above way, you don't need to tell
OptionParser which option class to use:
option_list=[MyOption("-c",action="store",type="complex",dest="c")]parser=OptionParser(option_list=option_list)
Adding new actions¶
Adding new actions is a bit trickier, because you have to understand that
optparse
has a couple of classifications for actions:
- "store" actions
actions that result in
optparse
storing a value to an attribute of thecurrent OptionValues instance; these options require a
dest
attribute to be supplied to the Option constructor.
- "typed" actions
actions that take a value from the command line and expect it to be of a
certain type; or rather, a string that can be converted to a certain type.
These options require a
type
attribute to the Optionconstructor.
These are overlapping sets: some default "store" actions are "store"
,
"store_const"
, "append"
, and "count"
, while the default "typed"
actions are "store"
, "append"
, and "callback"
.
When you add an action, you need to categorize it by listing it in at least one
of the following class attributes of Option (all are lists of strings):
Option.
ACTIONS
¶All actions must be listed in ACTIONS.
Option.
STORE_ACTIONS
¶"store" actions are additionally listed here.
Option.
TYPED_ACTIONS
¶"typed" actions are additionally listed here.
Option.
ALWAYS_TYPED_ACTIONS
¶Actions that always take a type (i.e. whose options always take a value) are
additionally listed here. The only effect of this is that
optparse
assigns the default type,
"string"
, to options with no explicit typewhose action is listed in
ALWAYS_TYPED_ACTIONS
.
In order to actually implement your new action, you must override Option's
take_action()
method and add a case that recognizes your action.
For example, let's add an "extend"
action. This is similar to the standard
"append"
action, but instead of taking a single value from the command-line
and appending it to an existing list, "extend"
will take multiple values in
a single comma-delimited string, and extend an existing list with them. That
is, if --names
is an "extend"
option of type "string"
, the command
line
--names=foo,bar--namesblah--namesding,dong
would result in a list
["foo","bar","blah","ding","dong"]
Again we define a subclass of Option:
classMyOption(Option):ACTIONS=Option.ACTIONS+("extend",)
STORE_ACTIONS=Option.STORE_ACTIONS+("extend",)
TYPED_ACTIONS=Option.TYPED_ACTIONS+("extend",)
ALWAYS_TYPED_ACTIONS=Option.ALWAYS_TYPED_ACTIONS+("extend",)
deftake_action(self,action,dest,opt,value,values,parser):
ifaction=="extend":
lvalue=value.split(",")
values.ensure_value(dest,[]).extend(lvalue)
else:
Option.take_action(
self,action,dest,opt,value,values,parser)
Features of note:
"extend"
both expects a value on the command-line and stores that valuesomewhere, so it goes in both
STORE_ACTIONS
andTYPED_ACTIONS
.to ensure that
optparse
assigns the default type of"string"
to"extend"
actions, we put the"extend"
action inALWAYS_TYPED_ACTIONS
as well.MyOption.take_action()
implements just this one new action, and passescontrol back to
Option.take_action()
for the standardoptparse
actions.
values
is an instance of the optparse_parser.Values class, which providesthe very useful
ensure_value()
method.ensure_value()
isessentially
getattr()
with a safety valve; it is called asvalues.ensure_value(attr,value)
If the
attr
attribute ofvalues
doesn't exist or isNone
, thenensure_value() first sets it to
value
, and then returns 'value. This isvery handy for actions like
"extend"
,"append"
, and"count"
, allof which accumulate data in a variable and expect that variable to be of a
certain type (a list for the first two, an integer for the latter). Using
ensure_value()
means that scripts using your action don't have to worryabout setting a default value for the option destinations in question; they
can just leave the default as
None
andensure_value()
will take care ofgetting it right when it's needed.
以上是 Python标准库optparse解析器的命令行选项 的全部内容, 来源链接: utcz.com/z/507778.html