彻底理解Java的Future模式

java

先上一个场景:假如你突然想做饭,但是没有厨具,也没有食材。网上购买厨具比较方便,食材去超市买更放心。

实现分析:在快递员送厨具的期间,我们肯定不会闲着,可以去超市买食材。所以,在主线程里面另起一个子线程去网购厨具。

但是,子线程执行的结果是要返回厨具的,而run方法是没有返回值的。所以,这才是难点,需要好好考虑一下。

模拟代码1:

package test;

public class CommonCook {

public static void main(String[] args) throws InterruptedException {

long startTime = System.currentTimeMillis();

// 第一步 网购厨具

OnlineShopping thread = new OnlineShopping();

thread.start();

thread.join(); // 保证厨具送到

// 第二步 去超市购买食材

Thread.sleep(2000); // 模拟购买食材时间

Shicai shicai = new Shicai();

System.out.println("第二步:食材到位");

// 第三步 用厨具烹饪食材

System.out.println("第三步:开始展现厨艺");

cook(thread.chuju, shicai);

System.out.println("总共用时" + (System.currentTimeMillis() - startTime) + "ms");

}

// 网购厨具线程

static class OnlineShopping extends Thread {

private Chuju chuju;

@Override

public void run() {

System.out.println("第一步:下单");

System.out.println("第一步:等待送货");

try {

Thread.sleep(5000); // 模拟送货时间

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println("第一步:快递送到");

chuju = new Chuju();

}

}

// 用厨具烹饪食材

static void cook(Chuju chuju, Shicai shicai) {}

// 厨具类

static class Chuju {}

// 食材类

static class Shicai {}

运行结果:

第一步:下单

第一步:等待送货

第一步:快递送到

第二步:食材到位

第三步:开始展现厨艺

总共用时7013ms

可以看到,多线程已经失去了意义。在厨具送到期间,我们不能干任何事。对应代码,就是调用join方法阻塞主线程。

有人问了,不阻塞主线程行不行???

不行!!!

从代码来看的话,run方法不执行完,属性chuju就没有被赋值,还是null。换句话说,没有厨具,怎么做饭。

Java现在的多线程机制,核心方法run是没有返回值的;如果要保存run方法里面的计算结果,必须等待run方法计算完,无论计算过程多么耗时。

面对这种尴尬的处境,程序员就会想:在子线程run方法计算的期间,能不能在主线程里面继续异步执行???

Where there is a will,there is a way!!!

这种想法的核心就是Future模式,下面先应用一下Java自己实现的Future模式。

模拟代码2:

package test;

import java.util.concurrent.Callable;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.FutureTask;

public class FutureCook {

public static void main(String[] args) throws InterruptedException, ExecutionException {

long startTime = System.currentTimeMillis();

// 第一步 网购厨具

Callable<Chuju> onlineShopping = new Callable<Chuju>() {

@Override

public Chuju call() throws Exception {

System.out.println("第一步:下单");

System.out.println("第一步:等待送货");

Thread.sleep(5000); // 模拟送货时间

System.out.println("第一步:快递送到");

return new Chuju();

}

};

FutureTask<Chuju> task = new FutureTask<Chuju>(onlineShopping);

new Thread(task).start();

// 第二步 去超市购买食材

Thread.sleep(2000); // 模拟购买食材时间

Shicai shicai = new Shicai();

System.out.println("第二步:食材到位");

// 第三步 用厨具烹饪食材

if (!task.isDone()) { // 联系快递员,询问是否到货

System.out.println("第三步:厨具还没到,心情好就等着(心情不好就调用cancel方法取消订单)");

}

Chuju chuju = task.get();

System.out.println("第三步:厨具到位,开始展现厨艺");

cook(chuju, shicai);

System.out.println("总共用时" + (System.currentTimeMillis() - startTime) + "ms");

}

// 用厨具烹饪食材

static void cook(Chuju chuju, Shicai shicai) {}

// 厨具类

static class Chuju {}

// 食材类

static class Shicai {}

}

运行结果:

第一步:下单

第一步:等待送货

第二步:食材到位

第三步:厨具还没到,心情好就等着(心情不好就调用cancel方法取消订单)

第一步:快递送到

第三步:厨具到位,开始展现厨艺

总共用时5005ms

 可以看见,在快递员送厨具的期间,我们没有闲着,可以去买食材;而且我们知道厨具到没到,甚至可以在厨具没到的时候,取消订单不要了。

好神奇,有没有。

下面具体分析一下第二段代码:

1)把耗时的网购厨具逻辑,封装到了一个Callable的call方法里面。

public interface Callable<V> {

/**

* Computes a result, or throws an exception if unable to do so.

*

* @return computed result

* @throws Exception if unable to compute a result

*/

V call() throws Exception;

}

 Callable接口可以看作是Runnable接口的补充,call方法带有返回值,并且可以抛出异常。

2)把Callable实例当作参数,生成一个FutureTask的对象,然后把这个对象当作一个Runnable,作为参数另起线程。

public class FutureTask<V> implements RunnableFuture<V>

public interface RunnableFuture<V> extends Runnable, Future<V>

public interface Future<V> {

boolean cancel(boolean mayInterruptIfRunning);

boolean isCancelled();

boolean isDone();

V get() throws InterruptedException, ExecutionException;

V get(long timeout, TimeUnit unit)

throws InterruptedException, ExecutionException, TimeoutException;

}

这个继承体系中的核心接口是Future。Future的核心思想是:一个方法f,计算过程可能非常耗时,等待f返回,显然不明智。可以在调用f的时候,立马返回一个Future,可以通过Future这个数据结构去控制方法f的计算过程。

这里的控制包括:

get方法:获取计算结果(如果还没计算完,也是必须等待的)

cancel方法:还没计算完,可以取消计算过程

isDone方法:判断是否计算完

isCancelled方法:判断计算是否被取消

这些接口的设计很完美,FutureTask的实现注定不会简单,后面再说。

3)在第三步里面,调用了isDone方法查看状态,然后直接调用task.get方法获取厨具,不过这时还没送到,所以还是会等待3秒。对比第一段代码的执行结果,这里我们节省了2秒。这是因为在快递员送货期间,我们去超市购买食材,这两件事在同一时间段内异步执行。

通过以上3步,我们就完成了对Java原生Future模式最基本的应用。下面具体分析下FutureTask的实现,先看JDK8的,再比较一下JDK6的实现。

既然FutureTask也是一个Runnable,那就看看它的run方法

public void run() {

if (state != NEW ||

!UNSAFE.compareAndSwapObject(this, runnerOffset,

null, Thread.currentThread()))

return;

try {

Callable<V> c = callable; // 这里的callable是从构造方法里面传人的

if (c != null && state == NEW) {

V result;

boolean ran;

try {

result = c.call();

ran = true;

} catch (Throwable ex) {

result = null;

ran = false;

setException(ex); // 保存call方法抛出的异常

}

if (ran)

set(result); // 保存call方法的执行结果

}

} finally {

// runner must be non-null until state is settled to

// prevent concurrent calls to run()

runner = null;

// state must be re-read after nulling runner to prevent

// leaked interrupts

int s = state;

if (s >= INTERRUPTING)

handlePossibleCancellationInterrupt(s);

}

}

 先看try语句块里面的逻辑,发现run方法的主要逻辑就是运行Callable的call方法,然后将保存结果或者异常(用的一个属性result)。这里比较难想到的是,将call方法抛出的异常也保存起来了。

这里表示状态的属性state是个什么鬼

     * Possible state transitions:

* NEW -> COMPLETING -> NORMAL

* NEW -> COMPLETING -> EXCEPTIONAL

* NEW -> CANCELLED

* NEW -> INTERRUPTING -> INTERRUPTED

*/

private volatile int state;

private static final int NEW = 0;

private static final int COMPLETING = 1;

private static final int NORMAL = 2;

private static final int EXCEPTIONAL = 3;

private static final int CANCELLED = 4;

private static final int INTERRUPTING = 5;

private static final int INTERRUPTED = 6;

把FutureTask看作一个Future,那么它的作用就是控制Callable的call方法的执行过程,在执行的过程中自然会有状态的转换:

1)一个FutureTask新建出来,state就是NEW状态;COMPETING和INTERRUPTING用的进行时,表示瞬时状态,存在时间极短(为什么要设立这种状态???不解);NORMAL代表顺利完成;EXCEPTIONAL代表执行过程出现异常;CANCELED代表执行过程被取消;INTERRUPTED被中断

2)执行过程顺利完成:NEW -> COMPLETING -> NORMAL

3)执行过程出现异常:NEW -> COMPLETING -> EXCEPTIONAL

4)执行过程被取消:NEW -> CANCELLED

5)执行过程中,线程中断:NEW -> INTERRUPTING -> INTERRUPTED

代码中状态判断、CAS操作等细节,请读者自己阅读。

再看看get方法的实现:

    public V get() throws InterruptedException, ExecutionException {

int s = state;

if (s <= COMPLETING)

s = awaitDone(false, 0L);

return report(s);

}

    private int awaitDone(boolean timed, long nanos)

throws InterruptedException {

final long deadline = timed ? System.nanoTime() + nanos : 0L;

WaitNode q = null;

boolean queued = false;

for (;;) {

if (Thread.interrupted()) {

removeWaiter(q);

throw new InterruptedException();

}

int s = state;

if (s > COMPLETING) {

if (q != null)

q.thread = null;

return s;

}

else if (s == COMPLETING) // cannot time out yet

Thread.yield();

else if (q == null)

q = new WaitNode();

else if (!queued)

queued = UNSAFE.compareAndSwapObject(this, waitersOffset,

q.next = waiters, q);

else if (timed) {

nanos = deadline - System.nanoTime();

if (nanos <= 0L) {

removeWaiter(q);

return state;

}

LockSupport.parkNanos(this, nanos);

}

else

LockSupport.park(this);

}

}

get方法的逻辑很简单,如果call方法的执行过程已完成,就把结果给出去;如果未完成,就将当前线程挂起等待。awaitDone方法里面死循环的逻辑,推演几遍就能弄懂;它里面挂起线程的主要创新是定义了WaitNode类,来将多个等待线程组织成队列,这是与JDK6的实现最大的不同。

挂起的线程何时被唤醒:

    private void finishCompletion() {

// assert state > COMPLETING;

for (WaitNode q; (q = waiters) != null;) {

if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {

for (;;) {

Thread t = q.thread;

if (t != null) {

q.thread = null;

LockSupport.unpark(t); // 唤醒线程

}

WaitNode next = q.next;

if (next == null)

break;

q.next = null; // unlink to help gc

q = next;

}

break;

}

}

done();

callable = null; // to reduce footprint

}

 以上就是JDK8的大体实现逻辑,像cancel、set等方法,也请读者自己阅读。

再来看看JDK6的实现。

JDK6的FutureTask的基本操作都是通过自己的内部类Sync来实现的,而Sync继承自AbstractQueuedSynchronizer这个出镜率极高的并发工具类

       /** State value representing that task is running */

private static final int RUNNING = 1;

/** State value representing that task ran */

private static final int RAN = 2;

/** State value representing that task was cancelled */

private static final int CANCELLED = 4;

/** The underlying callable */

private final Callable<V> callable;

/** The result to return from get() */

private V result;

/** The exception to throw from get() */

private Throwable exception;

 里面的状态只有基本的几个,而且计算结果和异常是分开保存的。

        V innerGet() throws InterruptedException, ExecutionException {

acquireSharedInterruptibly(0);

if (getState() == CANCELLED)

throw new CancellationException();

if (exception != null)

throw new ExecutionException(exception);

return result;

}

这个get方法里面处理等待线程队列的方式是调用了acquireSharedInterruptibly方法,看过我之前几篇博客文章的读者应该非常熟悉了。其中的等待线程队列、线程挂起和唤醒等逻辑,这里不再赘述,如果不明白,请出门左转。

最后来看看,Future模式衍生出来的更高级的应用。

再上一个场景:我们自己写一个简单的数据库连接池,能够复用数据库连接,并且能在高并发情况下正常工作。

实现代码1:

package test;

import java.util.concurrent.ConcurrentHashMap;

public class ConnectionPool {

private ConcurrentHashMap<String, Connection> pool = new ConcurrentHashMap<String, Connection>();

public Connection getConnection(String key) {

Connection conn = null;

if (pool.containsKey(key)) {

conn = pool.get(key);

} else {

conn = createConnection();

pool.putIfAbsent(key, conn);

}

return conn;

}

public Connection createConnection() {

return new Connection();

}

class Connection {}

}

 我们用了ConcurrentHashMap,这样就不必把getConnection方法置为synchronized(当然也可以用Lock),当多个线程同时调用getConnection方法时,性能大幅提升。

貌似很完美了,但是有可能导致多余连接的创建,推演一遍:

某一时刻,同时有3个线程进入getConnection方法,调用pool.containsKey(key)都返回false,然后3个线程各自都创建了连接。虽然ConcurrentHashMap的put方法只会加入其中一个,但还是生成了2个多余的连接。如果是真正的数据库连接,那会造成极大的资源浪费。

所以,我们现在的难点是:如何在多线程访问getConnection方法时,只执行一次createConnection。

结合之前Future模式的实现分析:当3个线程都要创建连接的时候,如果只有一个线程执行createConnection方法创建一个连接,其它2个线程只需要用这个连接就行了。再延伸,把createConnection方法放到一个Callable的call方法里面,然后生成FutureTask。我们只需要让一个线程执行FutureTask的run方法,其它的线程只执行get方法就好了。

上代码:

package test;

import java.util.concurrent.Callable;

import java.util.concurrent.ConcurrentHashMap;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.FutureTask;

public class ConnectionPool {

private ConcurrentHashMap<String, FutureTask<Connection>> pool = new ConcurrentHashMap<String, FutureTask<Connection>>();

public Connection getConnection(String key) throws InterruptedException, ExecutionException {

FutureTask<Connection> connectionTask = pool.get(key);

if (connectionTask != null) {

return connectionTask.get();

} else {

Callable<Connection> callable = new Callable<Connection>() {

@Override

public Connection call() throws Exception {

return createConnection();

}

};

FutureTask<Connection> newTask = new FutureTask<Connection>(callable);

connectionTask = pool.putIfAbsent(key, newTask);

if (connectionTask == null) {

connectionTask = newTask;

connectionTask.run();

}

return connectionTask.get();

}

}

public Connection createConnection() {

return new Connection();

}

class Connection {

}

}

 推演一遍:当3个线程同时进入else语句块时,各自都创建了一个FutureTask,但是ConcurrentHashMap只会加入其中一个。第一个线程执行pool.putIfAbsent方法后返回null,然后connectionTask被赋值,接着就执行run方法去创建连接,最后get。后面的线程执行pool.putIfAbsent方法不会返回null,就只会执行get方法。

在并发的环境下,通过FutureTask作为中间转换,成功实现了让某个方法只被一个线程执行。

就这么多吧,真是呕心沥血啊!!!哈哈

-------------------------------------------------------------------------------------------------------------

最后这个场景有问题,具体请看下篇文章 !!!

以上是 彻底理解Java的Future模式 的全部内容, 来源链接: utcz.com/z/391221.html

回到顶部