手写神经网络Python深度学习
import numpyimport scipy.special
import matplotlib.pyplot as plt
import scipy.misc
import glob
import imageio
import scipy.ndimage
class neuralNetWork:
def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
self.wih = numpy.random.normal(0.0,pow(self.inodes, -0.5),(self.hnodes,self.inodes))
self.who = numpy.random.normal(0.0,pow(self.hnodes, -0.5),(self.onodes,self.hnodes))
self.lr = learningrate
self.activation_function = lambda x: scipy.special.expit(x) # 激活函数
self.inverse_activation_function = lambda x: scipy.special.logit(x) # 反向查询log激活函数
def train(self,inputs_list,targets_list):
inputs = numpy.array(inputs_list,ndmin=2).T
targets = numpy.array(targets_list,ndmin=2).T
hidden_inputs = numpy.dot(self.wih,inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = numpy.dot(self.who,hidden_outputs)
final_outputs = self.activation_function(final_inputs)
output_errors = targets - final_outputs
hidden_errors = numpy.dot(self.who.T,output_errors)
self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),numpy.transpose(hidden_outputs))
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),numpy.transpose(inputs))
def query(self,inputs_list):
inputs = numpy.array(inputs_list,ndmin=2).T
hidden_inputs = numpy.dot(self.wih,inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = numpy.dot(self.who,hidden_outputs)
final_outputs = self.activation_function(final_inputs)
return final_outputs
def backquery(self, targets_list):
final_outputs = numpy.array(targets_list, ndmin=2).T
final_inputs = self.inverse_activation_function(final_outputs)
hidden_outputs = numpy.dot(self.who.T, final_inputs)
hidden_outputs -= numpy.min(hidden_outputs)
hidden_outputs /= numpy.max(hidden_outputs)
hidden_outputs *= 0.98
hidden_outputs += 0.01
hidden_inputs = self.inverse_activation_function(hidden_outputs)
inputs = numpy.dot(self.wih.T, hidden_inputs)
inputs -= numpy.min(inputs)
inputs /= numpy.max(inputs)
inputs *= 0.98
inputs += 0.01
return inputs
input_nodes = 784
hidden_nodes = 200
output_nodes = 10
learing_rate = 0.1
n = neuralNetWork(input_nodes,hidden_nodes,output_nodes,learing_rate)
train_data_file = open('mnist_train.csv', 'r')
train_data_list = train_data_file.readlines()
train_data_file.close()
epochs = 5
for e in range(epochs):
for record in train_data_list:
all_values = record.split(',')
#image_array = numpy.asfarray(all_values[1:]).reshape((28,28))
#plt.imshow(image_array,cmap='Greys',interpolation='None')
#plt.show()
inputs = (numpy.asfarray(all_values[1:])/255.0 *0.99)+0.01
targets = numpy.zeros(output_nodes) + 0.01
targets[int(all_values[0])] = 0.99
n.train(inputs,targets)
#手写字体倾斜10度作为测试数据
inputs_plusx_img = scipy.ndimage.interpolation.rotate(inputs.reshape(28,28), 10, cval=0.01, order=1, reshape=False)
n.train(inputs_plusx_img.reshape(784), targets)
inputs_minusx_img = scipy.ndimage.interpolation.rotate(inputs.reshape(28,28), -10, cval=0.01, order=1, reshape=False)
n.train(inputs_minusx_img.reshape(784), targets)
test_data_file = open('mnist_test.csv', 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
# all_values = test_data_list[0].split(',')
# # image_array = numpy.asfarray(all_values[1:]).reshape((28,28))
# # plt.imshow(image_array,cmap='Greys',interpolation='None')
# # plt.show()
# output = n.query((numpy.asfarray(all_values[1:])/ 255.0 * 0.99)+0.01)
scorecard = []
for record in test_data_list:
all_values = record.split(',')
correct_label = int(all_values[0])
#print(correct_label,'correct_label')
inputs = (numpy.asfarray(all_values[1:])/255.0 *0.99)+0.01
outputs = n.query(inputs)
label = numpy.argmax(outputs)
#print(label,'network answer')
if (label == correct_label):
scorecard.append(1)
else:
scorecard.append(0)
scorecard_array = numpy.asarray(scorecard)
print("performance = ",scorecard_array.sum() / scorecard_array.size)
# 识别自己手写字
our_own_dataset = []
for image_file_name in glob.glob('2828_my_own_?.png'):
label = int(image_file_name[-5:-4])
print ("loading ... ", image_file_name)
img_array = imageio.imread(image_file_name, as_gray=True)
img_data = 255.0 - img_array.reshape(784)
img_data = (img_data / 255.0 * 0.99) + 0.01
print(numpy.min(img_data))
print(numpy.max(img_data))
record = numpy.append(label,img_data)
our_own_dataset.append(record)
item = 2
plt.imshow(our_own_dataset[item][1:].reshape(28,28), cmap='Greys', interpolation='None')
correct_label = our_own_dataset[item][0]
inputs = our_own_dataset[item][1:]
outputs = n.query(inputs)
print (outputs)
label = numpy.argmax(outputs)
print("network says ", label)
if (label == correct_label):
print ("match!")
else:
print ("no match!")
# 反向生成图像
label = 0
targets = numpy.zeros(output_nodes) + 0.01
targets[label] = 0.99
print(targets)
image_data = n.backquery(targets)
plt.imshow(image_data.reshape(28,28), cmap='Greys', interpolation='None')
以上是 手写神经网络Python深度学习 的全部内容, 来源链接: utcz.com/z/387925.html