手写神经网络Python深度学习

python

import numpy

import scipy.special

import matplotlib.pyplot as plt

import scipy.misc

import glob

import imageio

import scipy.ndimage

class neuralNetWork:

def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):

self.inodes = inputnodes

self.hnodes = hiddennodes

self.onodes = outputnodes

self.wih = numpy.random.normal(0.0,pow(self.inodes, -0.5),(self.hnodes,self.inodes))

self.who = numpy.random.normal(0.0,pow(self.hnodes, -0.5),(self.onodes,self.hnodes))

self.lr = learningrate

self.activation_function = lambda x: scipy.special.expit(x) # 激活函数

self.inverse_activation_function = lambda x: scipy.special.logit(x) # 反向查询log激活函数

def train(self,inputs_list,targets_list):

inputs = numpy.array(inputs_list,ndmin=2).T

targets = numpy.array(targets_list,ndmin=2).T

hidden_inputs = numpy.dot(self.wih,inputs)

hidden_outputs = self.activation_function(hidden_inputs)

final_inputs = numpy.dot(self.who,hidden_outputs)

final_outputs = self.activation_function(final_inputs)

output_errors = targets - final_outputs

hidden_errors = numpy.dot(self.who.T,output_errors)

self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),numpy.transpose(hidden_outputs))

self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),numpy.transpose(inputs))

def query(self,inputs_list):

inputs = numpy.array(inputs_list,ndmin=2).T

hidden_inputs = numpy.dot(self.wih,inputs)

hidden_outputs = self.activation_function(hidden_inputs)

final_inputs = numpy.dot(self.who,hidden_outputs)

final_outputs = self.activation_function(final_inputs)

return final_outputs

def backquery(self, targets_list):

final_outputs = numpy.array(targets_list, ndmin=2).T

final_inputs = self.inverse_activation_function(final_outputs)

hidden_outputs = numpy.dot(self.who.T, final_inputs)

hidden_outputs -= numpy.min(hidden_outputs)

hidden_outputs /= numpy.max(hidden_outputs)

hidden_outputs *= 0.98

hidden_outputs += 0.01

hidden_inputs = self.inverse_activation_function(hidden_outputs)

inputs = numpy.dot(self.wih.T, hidden_inputs)

inputs -= numpy.min(inputs)

inputs /= numpy.max(inputs)

inputs *= 0.98

inputs += 0.01

return inputs

input_nodes = 784

hidden_nodes = 200

output_nodes = 10

learing_rate = 0.1

n = neuralNetWork(input_nodes,hidden_nodes,output_nodes,learing_rate)

train_data_file = open('mnist_train.csv', 'r')

train_data_list = train_data_file.readlines()

train_data_file.close()

epochs = 5

for e in range(epochs):

for record in train_data_list:

all_values = record.split(',')

#image_array = numpy.asfarray(all_values[1:]).reshape((28,28))

#plt.imshow(image_array,cmap='Greys',interpolation='None')

#plt.show()

inputs = (numpy.asfarray(all_values[1:])/255.0 *0.99)+0.01

targets = numpy.zeros(output_nodes) + 0.01

targets[int(all_values[0])] = 0.99

n.train(inputs,targets)

#手写字体倾斜10度作为测试数据

inputs_plusx_img = scipy.ndimage.interpolation.rotate(inputs.reshape(28,28), 10, cval=0.01, order=1, reshape=False)

n.train(inputs_plusx_img.reshape(784), targets)

inputs_minusx_img = scipy.ndimage.interpolation.rotate(inputs.reshape(28,28), -10, cval=0.01, order=1, reshape=False)

n.train(inputs_minusx_img.reshape(784), targets)

test_data_file = open('mnist_test.csv', 'r')

test_data_list = test_data_file.readlines()

test_data_file.close()

# all_values = test_data_list[0].split(',')

# # image_array = numpy.asfarray(all_values[1:]).reshape((28,28))

# # plt.imshow(image_array,cmap='Greys',interpolation='None')

# # plt.show()

# output = n.query((numpy.asfarray(all_values[1:])/ 255.0 * 0.99)+0.01)

scorecard = []

for record in test_data_list:

all_values = record.split(',')

correct_label = int(all_values[0])

#print(correct_label,'correct_label')

inputs = (numpy.asfarray(all_values[1:])/255.0 *0.99)+0.01

outputs = n.query(inputs)

label = numpy.argmax(outputs)

#print(label,'network answer')

if (label == correct_label):

scorecard.append(1)

else:

scorecard.append(0)

scorecard_array = numpy.asarray(scorecard)

print("performance = ",scorecard_array.sum() / scorecard_array.size)

# 识别自己手写字

our_own_dataset = []

for image_file_name in glob.glob('2828_my_own_?.png'):

label = int(image_file_name[-5:-4])

print ("loading ... ", image_file_name)

img_array = imageio.imread(image_file_name, as_gray=True)

img_data = 255.0 - img_array.reshape(784)

img_data = (img_data / 255.0 * 0.99) + 0.01

print(numpy.min(img_data))

print(numpy.max(img_data))

record = numpy.append(label,img_data)

our_own_dataset.append(record)

item = 2

plt.imshow(our_own_dataset[item][1:].reshape(28,28), cmap='Greys', interpolation='None')

correct_label = our_own_dataset[item][0]

inputs = our_own_dataset[item][1:]

outputs = n.query(inputs)

print (outputs)

label = numpy.argmax(outputs)

print("network says ", label)

if (label == correct_label):

print ("match!")

else:

print ("no match!")

# 反向生成图像

label = 0

targets = numpy.zeros(output_nodes) + 0.01

targets[label] = 0.99

print(targets)

image_data = n.backquery(targets)

plt.imshow(image_data.reshape(28,28), cmap='Greys', interpolation='None')

以上是 手写神经网络Python深度学习 的全部内容, 来源链接: utcz.com/z/387925.html

回到顶部