Python迷宫生成和迷宫破解算法实例

迷宫生成

1.随机PRIM

思路:先让迷宫中全都是墙,不断从列表(最初只含有一个启始单元格)中选取一个单元格标记为通路,将其周围(上下左右)未访问过的单元格放入列表并标记为已访问,再随机选取该单元格与周围通路单元格(若有的话)之间的一面墙打通。重复以上步骤直到列表为空,迷宫生成完毕。这种方式生成的迷宫难度高,岔口多。

效果:

代码:

import random

import numpy as np

from matplotlib import pyplot as plt

def build_twist(num_rows, num_cols): # 扭曲迷宫

# (行坐标,列坐标,四面墙的有无&访问标记)

m = np.zeros((num_rows, num_cols, 5), dtype=np.uint8)

r, c = 0, 0

trace = [(r, c)]

while trace:

r, c = random.choice(trace)

m[r, c, 4] = 1 # 标记为通路

trace.remove((r, c))

check = []

if c > 0:

if m[r, c - 1, 4] == 1:

check.append('L')

elif m[r, c - 1, 4] == 0:

trace.append((r, c - 1))

m[r, c - 1, 4] = 2 # 标记为已访问

if r > 0:

if m[r - 1, c, 4] == 1:

check.append('U')

elif m[r - 1, c, 4] == 0:

trace.append((r - 1, c))

m[r - 1, c, 4] = 2

if c < num_cols - 1:

if m[r, c + 1, 4] == 1:

check.append('R')

elif m[r, c + 1, 4] == 0:

trace.append((r, c + 1))

m[r, c + 1, 4] = 2

if r < num_rows - 1:

if m[r + 1, c, 4] == 1:

check.append('D')

elif m[r + 1, c, 4] == 0:

trace.append((r + 1, c))

m[r + 1, c, 4] = 2

if len(check):

direction = random.choice(check)

if direction == 'L': # 打通一面墙

m[r, c, 0] = 1

c = c - 1

m[r, c, 2] = 1

if direction == 'U':

m[r, c, 1] = 1

r = r - 1

m[r, c, 3] = 1

if direction == 'R':

m[r, c, 2] = 1

c = c + 1

m[r, c, 0] = 1

if direction == 'D':

m[r, c, 3] = 1

r = r + 1

m[r, c, 1] = 1

m[0, 0, 0] = 1

m[num_rows - 1, num_cols - 1, 2] = 1

return m

2.深度优先

思路:从起点开始随机游走并在前进方向两侧建立墙壁,标记走过的单元格,当无路可走(周围无未访问过的单元格)时重复返回上一个格子直到有新的未访问单元格可走。最终所有单元格都被访问过后迷宫生成完毕。这种方式生成的迷宫较为简单,由一条明显但是曲折的主路径和不多的分支路径组成。

效果:

代码:

def build_tortuous(num_rows, num_cols): # 曲折迷宫

m = np.zeros((num_rows, num_cols, 5), dtype=np.uint8)

r = 0

c = 0

trace = [(r, c)]

while trace:

m[r, c, 4] = 1 # 标记为已访问

check = []

if c > 0 and m[r, c - 1, 4] == 0:

check.append('L')

if r > 0 and m[r - 1, c, 4] == 0:

check.append('U')

if c < num_cols - 1 and m[r, c + 1, 4] == 0:

check.append('R')

if r < num_rows - 1 and m[r + 1, c, 4] == 0:

check.append('D')

if len(check):

trace.append([r, c])

direction = random.choice(check)

if direction == 'L':

m[r, c, 0] = 1

c = c - 1

m[r, c, 2] = 1

if direction == 'U':

m[r, c, 1] = 1

r = r - 1

m[r, c, 3] = 1

if direction == 'R':

m[r, c, 2] = 1

c = c + 1

m[r, c, 0] = 1

if direction == 'D':

m[r, c, 3] = 1

r = r + 1

m[r, c, 1] = 1

else:

r, c = trace.pop()

m[0, 0, 0] = 1

m[num_rows - 1, num_cols - 1, 2] = 1

return m

迷宫破解

效果:

1.填坑法

思路:从起点开始,不断随机选择没墙的方向前进,当处于一个坑(除了来时的方向外三面都是墙)中时,退一步并建造一堵墙将坑封上。不断重复以上步骤,最终就能抵达终点。

优缺点:可以处理含有环路的迷宫,但是处理时间较长还需要更多的储存空间。

代码:

def solve_fill(num_rows, num_cols, m): # 填坑法

map_arr = m.copy() # 拷贝一份迷宫来填坑

map_arr[0, 0, 0] = 0

map_arr[num_rows-1, num_cols-1, 2] = 0

move_list = []

xy_list = []

r, c = (0, 0)

while True:

if (r == num_rows-1) and (c == num_cols-1):

break

xy_list.append((r, c))

wall = map_arr[r, c]

way = []

if wall[0] == 1:

way.append('L')

if wall[1] == 1:

way.append('U')

if wall[2] == 1:

way.append('R')

if wall[3] == 1:

way.append('D')

if len(way) == 0:

return False

elif len(way) == 1: # 在坑中

go = way[0]

move_list.append(go)

if go == 'L': # 填坑

map_arr[r, c, 0] = 0

c = c - 1

map_arr[r, c, 2] = 0

elif go == 'U':

map_arr[r, c, 1] = 0

r = r - 1

map_arr[r, c, 3] = 0

elif go == 'R':

map_arr[r, c, 2] = 0

c = c + 1

map_arr[r, c, 0] = 0

elif go == 'D':

map_arr[r, c, 3] = 0

r = r + 1

map_arr[r, c, 1] = 0

else:

if len(move_list) != 0: # 不在坑中

come = move_list[len(move_list)-1]

if come == 'L':

if 'R' in way:

way.remove('R')

elif come == 'U':

if 'D' in way:

way.remove('D')

elif come == 'R':

if 'L' in way:

way.remove('L')

elif come == 'D':

if 'U' in way:

way.remove('U')

go = random.choice(way) # 随机选一个方向走

move_list.append(go)

if go == 'L':

c = c - 1

elif go == 'U':

r = r - 1

elif go == 'R':

c = c + 1

elif go == 'D':

r = r + 1

r_list = xy_list.copy()

r_list.reverse() # 行动坐标记录的反转

i = 0

while i < len(xy_list)-1: # 去掉重复的移动步骤

j = (len(xy_list)-1) - r_list.index(xy_list[i])

if i != j: # 说明这两个坐标之间的行动步骤都是多余的,因为一顿移动回到了原坐标

del xy_list[i:j]

del move_list[i:j]

r_list = xy_list.copy()

r_list.reverse()

i = i + 1

return move_list

2.回溯法

思路:遇到岔口则将岔口坐标和所有可行方向压入栈,从栈中弹出一个坐标和方向,前进。不断重复以上步骤,最终就能抵达终点。

优缺点:计算速度快,需要空间小,但无法处理含有环路的迷宫。

代码:

def solve_backtrack(num_rows, num_cols, map_arr): # 回溯法

move_list = ['R']

m = 1 # 回溯点组号

mark = []

r, c = (0, 0)

while True:

if (r == num_rows-1) and (c == num_cols-1):

break

wall = map_arr[r, c]

way = []

if wall[0] == 1:

way.append('L')

if wall[1] == 1:

way.append('U')

if wall[2] == 1:

way.append('R')

if wall[3] == 1:

way.append('D')

come = move_list[len(move_list) - 1]

if come == 'L':

way.remove('R')

elif come == 'U':

way.remove('D')

elif come == 'R':

way.remove('L')

elif come == 'D':

way.remove('U')

while way:

mark.append((r, c, m, way.pop())) # 记录当前坐标和可行移动方向

if mark:

r, c, m, go = mark.pop()

del move_list[m:] # 删除回溯点之后的移动

else:

return False

m = m + 1

move_list.append(go)

if go == 'L':

c = c - 1

elif go == 'U':

r = r - 1

elif go == 'R':

c = c + 1

elif go == 'D':

r = r + 1

del move_list[0]

return move_list

测试

rows = int(input("Rows: "))

cols = int(input("Columns: "))

Map = build_twist(rows, cols)

plt.imshow(draw(rows, cols, Map), cmap='gray')

fig = plt.gcf()

fig.set_size_inches(cols/10/3, rows/10/3)

plt.gca().xaxis.set_major_locator(plt.NullLocator())

plt.gca().yaxis.set_major_locator(plt.NullLocator())

plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)

plt.margins(0, 0)

fig.savefig('aaa.png', format='png', transparent=True, dpi=300, pad_inches=0)

move = solve_backtrack(rows, cols, Map)

plt.imshow(draw_path(draw(rows, cols, Map), move), cmap='hot')

fig = plt.gcf()

fig.set_size_inches(cols/10/3, rows/10/3)

plt.gca().xaxis.set_major_locator(plt.NullLocator())

plt.gca().yaxis.set_major_locator(plt.NullLocator())

plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)

plt.margins(0, 0)

fig.savefig('bbb.png', format='png', transparent=True, dpi=300, pad_inches=0)

以上这篇Python迷宫生成和迷宫破解算法实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Python迷宫生成和迷宫破解算法实例 的全部内容, 来源链接: utcz.com/z/361809.html

回到顶部