利用Java多线程技术导入数据到Elasticsearch的方法步骤

前言


近期接到一个任务,需要改造现有从mysql往Elasticsearch导入数据MTE(mysqlToEs)小工具,由于之前采用单线程导入,千亿数据需要两周左右的时间才能导入完成,导入效率非常低。所以楼主花了3天的时间,利用java线程池框架Executors中的FixedThreadPool线程池重写了MTE导入工具,单台服务器导入效率提高十几倍(合理调整线程数据,效率更高)。

关键技术栈

  • Elasticsearch
  • jdbc
  • ExecutorService\Thread
  • sql

工具说明

maven依赖

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

<version>${mysql.version}</version>

</dependency>

<dependency>

<groupId>org.elasticsearch</groupId>

<artifactId>elasticsearch</artifactId>

<version>${elasticsearch.version}</version>

</dependency>

<dependency>

<groupId>org.elasticsearch.client</groupId>

<artifactId>transport</artifactId>

<version>${elasticsearch.version}</version>

</dependency>

<dependency>

<groupId>org.projectlombok</groupId>

<artifactId>lombok</artifactId>

<version>${lombok.version}</version>

</dependency>

<dependency>

<groupId>com.alibaba</groupId>

<artifactId>fastjson</artifactId>

<version>${fastjson.version}</version>

</dependency>

java线程池设置

默认线程池大小为21个,可调整。其中POR为处理流程已办数据线程池,ROR为处理流程已阅数据线程池。

private static int THREADS = 21;

public static ExecutorService POR = Executors.newFixedThreadPool(THREADS);

public static ExecutorService ROR = Executors.newFixedThreadPool(THREADS);

定义已办生产者线程/已阅生产者线程:ZlPendProducer/ZlReadProducer

public class ZlPendProducer implements Runnable {

...

@Override

public void run() {

System.out.println(threadName + "::启动...");

for (int j = 0; j < Const.TBL.TBL_PEND_COUNT; j++)

try {

....

int size = 1000;

for (int i = 0; i < count; i += size) {

if (i + size > count) {

//作用为size最后没有100条数据则剩余几条newList中就装几条

size = count - i;

}

String sql = "select * from " + tableName + " limit " + i + ", " + size;

System.out.println(tableName + "::sql::" + sql);

rs = statement.executeQuery(sql);

List<HistPendingEntity> lst = new ArrayList<>();

while (rs.next()) {

HistPendingEntity p = PendUtils.getHistPendingEntity(rs);

lst.add(p);

}

MteExecutor.POR.submit(new ZlPendConsumer(lst));

Thread.sleep(2000);

}

....

} catch (Exception e) {

e.printStackTrace();

}

}

}

public class ZlReadProducer implements Runnable {

...已阅生产者处理逻辑同已办生产者

}

定义已办消费者线程/已阅生产者线程:ZlPendConsumer/ZlReadConsumer

public class ZlPendConsumer implements Runnable {

private String threadName;

private List<HistPendingEntity> lst;

public ZlPendConsumer(List<HistPendingEntity> lst) {

this.lst = lst;

}

@Override

public void run() {

...

lst.forEach(v -> {

try {

String json = new Gson().toJson(v);

EsClient.addDataInJSON(json, Const.ES.HistPendDB_Index, Const.ES.HistPendDB_type, v.getPendingId(), null);

Const.COUNTER.LD_P.incrementAndGet();

} catch (Exception e) {

e.printStackTrace();

System.out.println("err::PendingId::" + v.getPendingId());

}

});

...

}

}

public class ZlReadConsumer implements Runnable {

//已阅消费者处理逻辑同已办消费者

}

定义导入Elasticsearch数据监控线程:Monitor

监控线程-Monitor为了计算每分钟导入Elasticsearch的数据总条数,利用监控线程,可以调整线程池的线程数的大小,以便利用多线程更快速的导入数据。

public void monitorToES() {

new Thread(() -> {

while (true) {

StringBuilder sb = new StringBuilder();

sb.append("已办表数::").append(Const.TBL.TBL_PEND_COUNT)

.append("::已办总数::").append(Const.COUNTER.LD_P_TOTAL)

.append("::已办入库总数::").append(Const.COUNTER.LD_P);

sb.append("~~~~已阅表数::").append(Const.TBL.TBL_READ_COUNT);

sb.append("::已阅总数::").append(Const.COUNTER.LD_R_TOTAL)

.append("::已阅入库总数::").append(Const.COUNTER.LD_R);

if (ldPrevPendCount == 0 && ldPrevReadCount == 0) {

ldPrevPendCount = Const.COUNTER.LD_P.get();

ldPrevReadCount = Const.COUNTER.LD_R.get();

start = System.currentTimeMillis();

} else {

long end = System.currentTimeMillis();

if ((end - start) / 1000 >= 60) {

start = end;

sb.append("\n#########################################\n");

sb.append("已办每分钟TPS::" + (Const.COUNTER.LD_P.get() - ldPrevPendCount) + "条");

sb.append("::已阅每分钟TPS::" + (Const.COUNTER.LD_R.get() - ldPrevReadCount) + "条");

ldPrevPendCount = Const.COUNTER.LD_P.get();

ldPrevReadCount = Const.COUNTER.LD_R.get();

}

}

System.out.println(sb.toString());

try {

Thread.sleep(3000);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}).start();

}

初始化Elasticsearch:EsClient

String cName = meta.get("cName");//es集群名字

String esNodes = meta.get("esNodes");//es集群ip节点

Settings esSetting = Settings.builder()

.put("cluster.name", cName)

.put("client.transport.sniff", true)//增加嗅探机制,找到ES集群

.put("thread_pool.search.size", 5)//增加线程池个数,暂时设为5

.build();

String[] nodes = esNodes.split(",");

client = new PreBuiltTransportClient(esSetting);

for (String node : nodes) {

if (node.length() > 0) {

String[] hostPort = node.split(":");

client.addTransportAddress(new TransportAddress(InetAddress.getByName(hostPort[0]), Integer.parseInt(hostPort[1])));

}

}

初始化数据库连接

conn = DriverManager.getConnection(url, user, password);

启动参数

nohup java -jar mte.jar ES-Cluster2019 node1:9300,node2:9300,node3:9300 root 123456! jdbc:mysql://ip:3306/mte 130 130 >> ./mte.log 2>&1 &

参数说明

ES-Cluster2019 为Elasticsearch集群名字

node1:9300,node2:9300,node3:9300为es的节点IP

130 130为已办已阅分表的数据

程序入口:MteMain

// 监控线程

Monitor monitorService = new Monitor();

monitorService.monitorToES();

// 已办生产者线程

Thread pendProducerThread = new Thread(new ZlPendProducer(conn, "ZlPendProducer"));

pendProducerThread.start();

// 已阅生产者线程

Thread readProducerThread = new Thread(new ZlReadProducer(conn, "ZlReadProducer"));

readProducerThread.start();

以上是 利用Java多线程技术导入数据到Elasticsearch的方法步骤 的全部内容, 来源链接: utcz.com/z/359047.html

回到顶部