js贪心算法 钱币找零问题代码实例

给定一组硬币的面额,以及要找零的钱数,计算出符合找零钱数的最少硬币数量。

例如,美国硬币面额有1、5、10、25这四种面额,如果要找36美分的零钱,则得出的最少硬币数应该是1个25美分、1个10美分和1个10美分共三个硬币。这个算法要解决的就是诸如此类的问题。我们来看看如何用动态规划的方式来解决。

对于每一种面额,我们都分别计算所需要的硬币数量。具体算法如下:

  1. 如果全部用1美分的硬币,一共需要36个硬币
  2. 如果用5美分的硬币,则需要7个5美分的硬币 + 1个1美分的硬币 = 8个硬币
  3. 如果用10美分的硬币,则需要3个10美分的硬币 + 1个5美分的硬币 + 1个1美分的硬币 = 5个硬币
  4. 如果用25美分的硬币,则需要1个25美分的硬币 + 1个10美分的硬币 + 1个1美分的硬币 = 3个硬币

示意图

方案4的硬币总数最少,因此为最优方案。

具体的代码实现如下:

function minCoinChange(coins, amount) {

let result = null;

if (!amount) return result;

const makeChange = (index, value, min) => {

let coin = coins[index];

let newAmount = Math.floor(value / coin);

if (newAmount) min[coin] = newAmount;

if (value % coin !== 0) {

makeChange(--index, value - coin * newAmount, min);

}

};

const arr = [];

for (let i = 0; i < coins.length; i++) {

const cache = {};

makeChange(i, amount, cache);

arr.push(cache);

}

console.log(arr);

let newMin = 0;

arr.forEach(item => {

let min = 0;

for (let v in item) min += item[v];

if (!newMin || min < newMin) {

newMin = min;

result = item;

}

});

return result;

}

函数minCoinChange()接收一组硬币的面额,以及要找零的钱数。我们将上面例子中的值传入:

const result = minCoinChange2([1, 5, 10, 25], 36);

console.log(result);

得到如下结果:

[

{ '1': 36 },

{ '1': 1, '5': 7 },

{ '1': 1, '5': 1, '10': 3 },

{ '1': 1, '10': 1, '25': 1 }

]

{ '1': 1, '10': 1, '25': 1 }

上面的数组是我们在代码中打印出来的arr的值,用来展示四种不同面额的硬币作为找零硬币时,实际所需要的硬币种类和数量。最终,我们会计算arr数组中硬币总数最少的那个方案,作为minCoinChange()函数的输出。

当然在实际应用中,我们可以把硬币抽象成任何你需要的数字,这个算法能给出你满足结果的最小组合。

以上是 js贪心算法 钱币找零问题代码实例 的全部内容, 来源链接: utcz.com/z/356292.html

回到顶部