Python matplotlib读取excel数据并用for循环画多个子图subplot操作

读取excel数据需要用到xlrd模块,在命令行运行下面命令进行安装

pip install xlrd

表格内容大致如下,有若干sheet,每个sheet记录了同一所学校的所有学生成绩,分为语文、数学、英语、综合、总分

考号姓名班级学校语文数学英语综合总分
............13613610057429
............1281067054358
............110.5629244308.5

画多张子图需要用到subplot函数

subplot(nrows, ncols, index, **kwargs)

想要在一张画布上按如下格式画多张子图

语文 --- 数学

英语 --- 综合

----- 总分 ----

需要用的subplot参数分别为

subplot(321) --- subplot(322)

subplot(323) --- subplot(324)

subplot(313)

#!/usr/bin/env python

# -*- coding:utf-8 -*-

from xlrd import open_workbook as owb

import matplotlib.pyplot as plt

#import matplotlib.colors as colors

#from matplotlib.ticker import MultipleLocator, FormatStrFormatter, FuncFormatter

import numpy as np

districts=[] # 存储各校名称--对应于excel表格的sheet名

data_index = 0

new_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',

'#9467bd', '#8c564b', '#e377c2', '#7f7f7f',

'#bcbd22', '#17becf']

wb = owb('raw_data.xlsx') # 数据文件

active_districts = ['二小','一小','四小'] ## 填写需要画哪些学校的,名字需要与表格内一致

avg_yuwen = []

avg_shuxue = []

avg_yingyu = []

avg_zonghe = []

avg_total = []

'按页数依次读取表格数据作为Y轴参数'

for s in wb.sheets():

#以下两行用于控制是否全部绘图,还是只绘选择的区

#if s.name not in active_districts:

# continue

print('Sheet: ', s.name)

districts.append(s.name)

avg_score = 0

yuwen = 0

shuxue = 0

yingyu = 0

zonghe = 0

zongfen = 0

total_student = 0

for row in range(1,s.nrows):

total_student += 1

#读取各科成绩并计算平均分

yuwen = yuwen + (s.cell(row, 4).value - yuwen)/total_student # 语文

shuxue = shuxue + (s.cell(row, 5).value - shuxue) / total_student # 数学

yingyu = yingyu + (s.cell(row, 6).value - yingyu) / total_student # 英语

zonghe = zonghe + (s.cell(row, 7).value - zonghe) / total_student # 综合

zongfen = zongfen + (s.cell(row, 8).value - zongfen) / total_student # 总分

avg_yuwen.append(yuwen)

avg_shuxue.append(shuxue)

avg_yingyu.append(yingyu)

avg_zonghe.append(zonghe)

avg_total.append(zongfen)

data_index += 1

print('开始画图...')

plt.rcParams['font.sans-serif']=['SimHei'] # 中文支持

plt.rcParams['axes.unicode_minus']=False # 中文支持

figsize = 11,14

fig = plt.figure(figsize=figsize)

fig.suptitle('各校各科成绩平均分统计',fontsize=18)

my_x=np.arange(len(districts))

width=0.5

ax1 = plt.subplot(321)

#total_width=width*(len(districts))

b = ax1.bar(my_x , avg_yuwen, width, tick_label=districts, align='center', color=new_colors)

for i in range(0,len(avg_yuwen)):

ax1.text(my_x[i], avg_yuwen[i], '%.2f' % (avg_yuwen[i]), ha='center', va='bottom',fontsize=10)

ax1.set_title(u'语文')

ax1.set_ylabel(u"平均分")

ax1.set_ylim(60, 130)

ax2 = plt.subplot(322)

ax2.bar(my_x, avg_shuxue, width, tick_label=districts, align='center', color=new_colors)

for i in range(0, len(avg_shuxue)):

ax2.text(my_x[i], avg_shuxue[i], '%.2f' %(avg_shuxue[i]), ha='center', va='bottom', fontsize=10)

ax2.set_title(u'数学')

ax2.set_ylabel(u'平均分')

ax2.set_ylim(50,120)

ax3 = plt.subplot(323)

b = ax3.bar(my_x , avg_yingyu, width, tick_label=districts, align='center', color=new_colors)

for i in range(0,len(avg_yingyu)):

ax3.text(my_x[i], avg_yingyu[i], '%.2f' % (avg_yingyu[i]), ha='center', va='bottom',fontsize=10)

ax3.set_title(u'英语')

ax3.set_ylabel(u"平均分")

ax3.set_ylim(30, 100)

ax4 = plt.subplot(324)

b = ax4.bar(my_x , avg_zonghe, width, tick_label=districts, align='center', color=new_colors)

for i in range(0,len(avg_zonghe)):

ax4.text(my_x[i], avg_zonghe[i], '%.2f' % (avg_zonghe[i]), ha='center', va='bottom',fontsize=10)

ax4.set_title(u'综合')

ax4.set_ylabel(u"平均分")

ax4.set_ylim(0, 60)

ax5 = plt.subplot(313)

total_width=width*(len(districts))

b = ax5.bar(my_x , avg_total, width, tick_label=districts, align='center', color=new_colors)

for i in range(0,len(avg_total)):

ax5.text(my_x[i], avg_total[i], '%.2f' % (avg_total[i]), ha='center', va='bottom',fontsize=10)

ax5.set_title(u'总分')

ax5.set_ylabel(u"平均分")

ax5.set_ylim(250, 400)

plt.savefig('avg.png')

plt.show()

这样虽然能画出来,但是需要手动写每个subplot的代码,代码重复量太大,能不能用for循环的方式呢?

继续尝试,

先整理出for循环需要的不同参数

avg_scores = [] # 存储各科成绩,2维list

subjects = ['语文','数学','英语','综合','总分'] #每个子图的title

plot_pos = [321,322,323,324,313] # 每个子图的位置

y_lims = [(60,130), (50,120), (30,100), (0,60), (200,400)] # 每个子图的ylim参数

数据读取的修改比较简单,但是到画图时,如果还用 ax = plt.subplots(plot_pos[pos])方法的话,会报错

Traceback (most recent call last):

File "...xxx.py", line 66, in <module>

b = ax.bar(my_x , y_data, width, tick_label=districts, align='center', color=new_colors) # 画柱状图

AttributeError: 'tuple' object has no attribute 'bar'

搜索一番,没找到合适的答案,想到可以换fig.add_subplot(plot_pos[pos]) 试一试,结果成功了,整体代码如下

#!/usr/bin/env python

# -*- coding:utf-8 -*-

from xlrd import open_workbook as owb

import matplotlib.pyplot as plt

#import matplotlib.colors as colors

#from matplotlib.ticker import MultipleLocator, FormatStrFormatter, FuncFormatter

import numpy as np

districts=[] # 存储各校名称--对应于excel表格的sheet名

total_stu=[] # 存储各区学生总数

data_index = 0

new_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',

'#9467bd', '#8c564b', '#e377c2', '#7f7f7f',

'#bcbd22', '#17becf']

wb = owb('raw_data.xlsx') # 数据文件

active_districts = ['BY','二小','一小','WR','四小'] ## 填写需要画哪些学校的,名字需要与表格内一致

avg_scores = [] # 存储各科成绩,2维list

subjects = ['语文','数学','英语','综合','总分'] #每个子图的title

plot_pos = [321,322,323,324,313] # 每个子图的位置

y_lims = [(60,130), (50,120), (30,100), (0,60), (200,400)] # 每个子图的ylim参数

'按页数依次读取表格数据作为Y轴参数'

for s in wb.sheets():

#以下两行用于控制是否全部绘图,还是只绘选择的区

#if s.name not in active_districts:

# continue

print('Sheet: ', s.name)

districts.append(s.name)

avg_scores.append([])

yuwen = 0

shuxue = 0

yingyu = 0

zonghe = 0

zongfen = 0

total_student = 0

for row in range(1,s.nrows):

total_student += 1

#tmp = s.cell(row,4).value

yuwen = yuwen + (s.cell(row, 4).value - yuwen)/total_student # 语文

shuxue = shuxue + (s.cell(row, 5).value - shuxue) / total_student # 数学

yingyu = yingyu + (s.cell(row, 6).value - yingyu) / total_student # 英语

zonghe = zonghe + (s.cell(row, 7).value - zonghe) / total_student # 综合

zongfen = zongfen + (s.cell(row, 8).value - zongfen) / total_student # 总分

avg_scores[data_index].append(yuwen)

avg_scores[data_index].append(shuxue)

avg_scores[data_index].append(yingyu)

avg_scores[data_index].append(zonghe)

avg_scores[data_index].append(zongfen)

data_index += 1

print('开始画图...')

plt.rcParams['font.sans-serif']=['SimHei']

plt.rcParams['axes.unicode_minus']=False

figsize = 11,14

fig = plt.figure(figsize=figsize)

fig.suptitle('各校各科成绩平均分统计',fontsize=18)

my_x=np.arange(len(districts))

width=0.5

print(avg_scores)

for pos in np.arange(len(plot_pos)):

#ax = plt.subplots(plot_pos[pos])

ax = fig.add_subplot(plot_pos[pos]) # 如果用ax = plt.subplots会报错'tuple' object has no attribute 'bar'

y_data = [x[pos] for x in avg_scores] # 按列取数据

print(y_data)

b = ax.bar(my_x , y_data, width, tick_label=districts, align='center', color=new_colors) # 画柱状图

for i in np.arange(len(y_data)):

ax.text(my_x[i], y_data[i], '%.2f' % (y_data[i]), ha='center', va='bottom',fontsize=10) # 添加文字

ax.set_title(subjects[pos])

ax.set_ylabel(u"平均分")

ax.set_ylim(y_lims[pos])

plt.savefig('jh_avg_auto.png')

plt.show()

和之前的结果一样,能找到唯一一处细微差别嘛

以上这篇Python matplotlib读取excel数据并用for循环画多个子图subplot操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Python matplotlib读取excel数据并用for循环画多个子图subplot操作 的全部内容, 来源链接: utcz.com/z/352818.html

回到顶部