Python - 使用内部连接合并 Pandas DataFrame
要合并 Pandas DataFrame,请使用该merge()函数。通过在函数的“如何”参数下设置,在两个数据帧上实现内部连接,merge()即 -
how = “inner”
首先,让我们使用别名导入 pandas 库 -
import pandas as pd
创建 DataFrame1 -
dataFrame1 = pd.DataFrame({
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],
"Units": [100, 150, 110, 80, 110, 90]
}
)
现在,创建 DataFrame2 -
dataFrame2 = pd.DataFrame({
"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],
"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]
}
)
将 DataFrames 与公共列 Car 和“how”参数中的“inner”合并实现 Inner Join -
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="inner")
示例
以下是代码 -
#输出结果# 使用内部连接合并 Pandas DataFrame
#
import pandas as pd
# 创建 DataFrame1
dataFrame1 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],
"Units": [100, 150, 110, 80, 110, 90]
}
)
print"DataFrame1 ...\n",dataFrame1
# 创建 DataFrame2
dataFrame2 = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],
"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000]
}
)
print"\nDataFrame2 ...\n",dataFrame2
# merge DataFrames with common column Car and "inner" in "how" parameter implements Inner Join
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="inner")
print"\nMerged dataframe with inner join...\n", mergedRes
这将产生以下输出 -
DataFrame1 ...Car Units
0 BMW 100
1 Lexus 150
2 Audi 110
3 Mustang 80
4 Bentley 110
5 Jaguar 90
DataFrame2 ...
Car Reg_Price
0 BMW 7000
1 Lexus 1500
2 Tesla 5000
3 Mustang 8000
4 Mercedes 9000
5 Jaguar 6000
Merged dataframe with inner join...
Car Units Reg_Price
0 BMW 100 7000
1 Lexus 150 1500
2 Mustang 80 8000
3 Jaguar 90 6000
以上是 Python - 使用内部连接合并 Pandas DataFrame 的全部内容, 来源链接: utcz.com/z/350429.html