浅析pandas 数据结构中的DataFrame

DataFrame 类型类似于数据库表结构的数据结构,其含有行索引和列索引,可以将DataFrame 想成是由相同索引的Series组成的Dict类型。在其底层是通过二维以及一维的数据块实现。

1. DataFrame 对象的构建

  1.1 用包含等长的列表或者是NumPy数组的字典创建DataFrame对象

In [68]: import pandas as pd

In [69]: from pandas import Series,DataFrame

# 建立包含等长列表的字典类型

In [70]: data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],'year': [2000, 2001, 20

...: 02, 2001, 2002],'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}

In [71]: data

Out[71]:

{'pop': [1.5, 1.7, 3.6, 2.4, 2.9],

'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],

'year': [2000, 2001, 2002, 2001, 2002]}

# 建立DataFrame对象

In [72]: frame1 = DataFrame(data)

# 红色部分为自动生成的索引

In [73]: frame1

Out[73]:

pop state year

0 1.5 Ohio 2000

1 1.7 Ohio 2001

2 3.6 Ohio 2002

3 2.4 Nevada 2001

4 2.9 Nevada 2002

  在建立过程中可以指点列的顺序:

In [74]: frame1 = DataFrame(data,columns=['year', 'state', 'pop'])

In [75]: frame1

Out[75]:

year state pop

0 2000 Ohio 1.5

1 2001 Ohio 1.7

2 2002 Ohio 3.6

3 2001 Nevada 2.4

4 2002 Nevada 2.9

  和Series一样,DataFrame也是可以指定索引内容:

In [76]: ind = ['one', 'two', 'three', 'four', 'five']

In [77]: frame1 = DataFrame(data,index = ind)

In [78]: frame1

Out[78]:

pop state year

one 1.5 Ohio 2000

two 1.7 Ohio 2001

three 3.6 Ohio 2002

four 2.4 Nevada 2001

five 2.9 Nevada 2002

  1.2. 用由字典类型组成的嵌套字典类型来生成DataFrame对象

  当由嵌套的字典类型生成DataFrame的时候,外部的字典索引会成为列名,内部的字典索引会成为行名。生成的DataFrame会根据行索引排序

In [84]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}

In [85]: frame3 = DataFrame(pop)

In [86]: frame3

Out[86]:

Nevada Ohio

2000 NaN 1.5

2001 2.4 1.7

2002 2.9 3.6

  除了使用默认的按照行索引排序之外,还可以指定行序列:

In [95]: frame3 = DataFrame(pop,[2002,2001,2000])

In [96]: frame3

Out[96]:

Nevada Ohio

2002 2.9 3.6

2001 2.4 1.7

2000 NaN 1.5

  1.3 其它构造方法:

  

2. DataFrame 内容访问

  从DataFrame中获取一列的结果为一个Series,可以通过以下两种方式获取:

# 以字典索引方式获取

In [100]: frame1["state"]

Out[100]:

one Ohio

two Ohio

three Ohio

four Nevada

five Nevada

Name: state, dtype: object

# 以属性方式获取

In [101]: frame1.state

Out[101]:

one Ohio

two Ohio

three Ohio

four Nevada

five Nevada

Name: state, dtype: object

  也可以通过ix获取一行数据:

In [109]: frame1.ix["one"] # 或者是 frame1.ix[0]

Out[109]:

pop 1.5

state Ohio

year 2000

Name: one, dtype: object

# 获取多行数据

In [110]: frame1.ix[["tow","three","four"]]

Out[110]:

pop state year

tow NaN NaN NaN

three 3.6 Ohio 2002.0

four 2.4 Nevada 2001.0

# 还可以通过默认数字行索引来获取数据

In [111]: frame1.ix[range(3)]

Out[111]:

pop state year

one 1.5 Ohio 2000

two 1.7 Ohio 2001

three 3.6 Ohio 2002

  获取指定行,指定列的交汇值:

In [119]: frame1["state"]

Out[119]:

one Ohio

two Ohio

three Ohio

four Nevada

five Nevada

Name: state, dtype: object

In [120]: frame1["state"][0]

Out[120]: 'Ohio'

In [121]: frame1["state"]["one"]

Out[121]: 'Ohio'

  先指定列再指定行:

In [125]: frame1.ix[0]

Out[125]:

pop 1.5

state Ohio

year 2000

Name: one, dtype: object

In [126]: frame1.ix[0]["state"]

Out[126]: 'Ohio'

In [127]: frame1.ix["one"]["state"]

Out[127]: 'Ohio'

In [128]: frame1.ix["one"][0]

Out[128]: 1.5

In [129]: frame1.ix[0][0]

Out[129]: 1.5

3. DataFrame 对象的修改

  增加一列,并所有赋值为同一个值:

# 增加一列值

In [131]: frame1["debt"] = 10

In [132]: frame1

Out[132]:

pop state year debt

one 1.5 Ohio 2000 10

two 1.7 Ohio 2001 10

three 3.6 Ohio 2002 10

four 2.4 Nevada 2001 10

five 2.9 Nevada 2002 10

# 更改一列的值

In [133]: frame1["debt"] = np.arange(5)

In [134]: frame1

Out[134]:

pop state year debt

one 1.5 Ohio 2000 0

two 1.7 Ohio 2001 1

three 3.6 Ohio 2002 2

four 2.4 Nevada 2001 3

five 2.9 Nevada 2002 4

  追加类型为Series的一列

# 判断是否为东部区

In [137]: east = (frame1.state == "Ohio")

In [138]: east

Out[138]:

one True

two True

three True

four False

five False

Name: state, dtype: bool

# 赋Series值

In [139]: frame1["east"] = east

In [140]: frame1

Out[140]:

pop state year debt east

one 1.5 Ohio 2000 0 True

two 1.7 Ohio 2001 1 True

three 3.6 Ohio 2002 2 True

four 2.4 Nevada 2001 3 False

five 2.9 Nevada 2002 4 False

DataFrame 的行可以命名,同时多列也可以命名:

In [145]: frame3.columns.name = "state"

In [146]: frame3.index.name = "year"

In [147]: frame3

Out[147]:

state Nevada Ohio

year

2002 2.9 3.6

2001 2.4 1.7

2000 NaN 1.5

总结

以上所述是小编给大家介绍的pandas 数据结构之DataFrame,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!

如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

以上是 浅析pandas 数据结构中的DataFrame 的全部内容, 来源链接: utcz.com/z/347926.html

回到顶部