查找C ++中最长公共子序列的长度的程序
假设我们有两个字符串text1和text2,我们必须找到它们最长的公共子序列的长度。众所周知,字符串的子序列是从原始字符串生成的新字符串,其中删除了一些字符,而不会更改其余字符的相对顺序。(因此,例如“ abe”是“ abcde”的子序列,而“ adc”则不是)。两个琴弦的共同子序列是两个琴弦共同的子序列。因此,如果没有公共子序列,则返回0。如果输入类似“ abcde”和“ ace”,则结果将为3。
为了解决这个问题,我们将遵循以下步骤-
n:= s的大小,m:= x的大小
如果n为0或m为0,则返回0
s:=空字符串,与s串联
x:=空字符串,与x串联
ret:= 0
定义阶数为(n + 1)x(m + 1)的矩阵dp
对于我在1到n范围内
dp [i,j]:= dp [i,j-1]和dp [i – 1,j]的最大值
如果s [i] = x [j],则
dp [i,j]:= dp [i,j]的最大值,1 + dp [i – 1,j – 1]
对于1到m范围内的j
返回dp [n,m]
让我们看下面的实现以更好地理解-
示例
#include <bits/stdc++.h>using namespace std;
class Solution {
public:
int longestCommonSubsequence(string s, string x) {
int n = s.size();
int m = x.size();
if(!n || !m) return 0;
s = " " + s;
x = " " + x;
int ret = 0;
vector < vector <int> > dp(n + 1, vector <int>(m + 1));
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m ; j++){
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
if(s[i] == x[j]) {
dp[i][j] = max(dp[i][j], 1 + dp[i - 1][j - 1]);
}
}
}
return dp[n][m];
}
};
main(){
Solution ob;
cout << (ob.longestCommonSubsequence("abcde", "ace"));
}
输入项
"abcde""ace"
输出结果
3
以上是 查找C ++中最长公共子序列的长度的程序 的全部内容, 来源链接: utcz.com/z/345632.html