python利用pytesseract 实现本地识别图片文字
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import glob
from os import path
import os
import pytesseract
from PIL import Image
from queue import Queue
import threading
import datetime
import cv2
def convertimg(picfile, outdir):
'''调整图片大小,对于过大的图片进行压缩
picfile: 图片路径
outdir: 图片输出路径
'''
img = Image.open(picfile)
width, height = img.size
while (width * height > 4000000): # 该数值压缩后的图片大约 两百多k
width = width // 2
height = height // 2
new_img = img.resize((width, height), Image.BILINEAR)
new_img.save(path.join(outdir, os.path.basename(picfile)))
def baiduOCR(ts_queue):
while not ts_queue.empty():
picfile = ts_queue.get()
filename = path.basename(picfile)
outfile = 'D:\Study\pythonProject\scrapy\IpProxy\port_zidian.txt'
img = cv2.imread(picfile, cv2.IMREAD_COLOR)
print("正在识别图片:\t" + filename)
message = pytesseract.image_to_string(img,lang = 'eng')
message = message.replace('
', '')
message = message.replace('\n', '')
# message = client.basicAccurate(img) # 通用文字高精度识别,每天 800 次免费
#print("识别成功!"))
try:
filename1 = filename.split('.')[0]
filename1 = ''.join(filename1)
with open(outfile, 'a+') as fo:
fo.writelines('\'' + filename1 + '\'' + ':' + message + ',')
fo.writelines('\n')
# fo.writelines("+" * 60 + '\n')
# fo.writelines("识别图片:\t" + filename + "\n" * 2)
# fo.writelines("文本内容:\n")
# # 输出文本内容
# for text in message.get('words_result'):
# fo.writelines(text.get('words') + '\n')
# fo.writelines('\n' * 2)
os.remove(filename)
print("识别成功!")
except:
print('识别失败')
print("文本导出成功!")
print()
def duqu_tupian(dir):
ts_queue = Queue(10000)
outdir = dir
# if path.exists(outfile):
# os.remove(outfile)
if not path.exists(outdir):
os.mkdir(outdir)
print("压缩过大的图片...")
# 首先对过大的图片进行压缩,以提高识别速度,将压缩的图片保存与临时文件夹中
try:
for picfile in glob.glob(r"D:\Study\pythonProject\scrapy\IpProxy\tmp\*"):
convertimg(picfile, outdir)
print("图片识别...")
for picfile in glob.glob("tmp1/*"):
ts_queue.put(picfile)
#baiduOCR(picfile, outfile)
#os.remove(picfile)
print('图片文本提取结束!文本输出结果位于文件中。' )
#os.removedirs(outdir)
return ts_queue
except:
print('失败')
if __name__ == "__main__":
start = datetime.datetime.now().replace(microsecond=0)
t = 'tmp1'
s = duqu_tupian(t)
threads = []
try:
for i in range(100):
t = threading.Thread(target=baiduOCR, name='th-' + str(i), kwargs={'ts_queue': s})
threads.append(t)
for t in threads:
t.start()
for t in threads:
t.join()
end = datetime.datetime.now().replace(microsecond=0)
print('删除耗时:' + str(end - start))
except:
print('识别失败')
实测速度慢,但用了多线程明显提高了速度,但准确度稍低,同样高清图片,90百分识别率。还时不时出现乱码文字,乱空格,这里展现不了,自己实践吧,重点免费的,随便识别,通向100张图片,用时快6分钟了,速度慢了一倍,但是是免费的,挺不错的了。
以上是 python利用pytesseract 实现本地识别图片文字 的全部内容, 来源链接: utcz.com/z/343960.html