python利用pytesseract 实现本地识别图片文字

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

import glob

from os import path

import os

import pytesseract

from PIL import Image

from queue import Queue

import threading

import datetime

import cv2

def convertimg(picfile, outdir):

'''调整图片大小,对于过大的图片进行压缩

picfile: 图片路径

outdir: 图片输出路径

'''

img = Image.open(picfile)

width, height = img.size

while (width * height > 4000000): # 该数值压缩后的图片大约 两百多k

width = width // 2

height = height // 2

new_img = img.resize((width, height), Image.BILINEAR)

new_img.save(path.join(outdir, os.path.basename(picfile)))

def baiduOCR(ts_queue):

while not ts_queue.empty():

picfile = ts_queue.get()

filename = path.basename(picfile)

outfile = 'D:\Study\pythonProject\scrapy\IpProxy\port_zidian.txt'

img = cv2.imread(picfile, cv2.IMREAD_COLOR)

print("正在识别图片:\t" + filename)

message = pytesseract.image_to_string(img,lang = 'eng')

message = message.replace('

', '')

message = message.replace('\n', '')

# message = client.basicAccurate(img) # 通用文字高精度识别,每天 800 次免费

#print("识别成功!"))

try:

filename1 = filename.split('.')[0]

filename1 = ''.join(filename1)

with open(outfile, 'a+') as fo:

fo.writelines('\'' + filename1 + '\'' + ':' + message + ',')

fo.writelines('\n')

# fo.writelines("+" * 60 + '\n')

# fo.writelines("识别图片:\t" + filename + "\n" * 2)

# fo.writelines("文本内容:\n")

# # 输出文本内容

# for text in message.get('words_result'):

# fo.writelines(text.get('words') + '\n')

# fo.writelines('\n' * 2)

os.remove(filename)

print("识别成功!")

except:

print('识别失败')

print("文本导出成功!")

print()

def duqu_tupian(dir):

ts_queue = Queue(10000)

outdir = dir

# if path.exists(outfile):

# os.remove(outfile)

if not path.exists(outdir):

os.mkdir(outdir)

print("压缩过大的图片...")

# 首先对过大的图片进行压缩,以提高识别速度,将压缩的图片保存与临时文件夹中

try:

for picfile in glob.glob(r"D:\Study\pythonProject\scrapy\IpProxy\tmp\*"):

convertimg(picfile, outdir)

print("图片识别...")

for picfile in glob.glob("tmp1/*"):

ts_queue.put(picfile)

#baiduOCR(picfile, outfile)

#os.remove(picfile)

print('图片文本提取结束!文本输出结果位于文件中。' )

#os.removedirs(outdir)

return ts_queue

except:

print('失败')

if __name__ == "__main__":

start = datetime.datetime.now().replace(microsecond=0)

t = 'tmp1'

s = duqu_tupian(t)

threads = []

try:

for i in range(100):

t = threading.Thread(target=baiduOCR, name='th-' + str(i), kwargs={'ts_queue': s})

threads.append(t)

for t in threads:

t.start()

for t in threads:

t.join()

end = datetime.datetime.now().replace(microsecond=0)

print('删除耗时:' + str(end - start))

except:

print('识别失败')

实测速度慢,但用了多线程明显提高了速度,但准确度稍低,同样高清图片,90百分识别率。还时不时出现乱码文字,乱空格,这里展现不了,自己实践吧,重点免费的,随便识别,通向100张图片,用时快6分钟了,速度慢了一倍,但是是免费的,挺不错的了。

以上是 python利用pytesseract 实现本地识别图片文字 的全部内容, 来源链接: utcz.com/z/343960.html

回到顶部