如何在不使用R中的str函数的情况下检查数据帧结构?
要在 R 中不使用 str 函数检查数据帧结构,我们可以按照以下步骤操作 -
首先,加载数据或创建新数据或使用内置数据集。
然后,使用 tibble 包的瞥见功能。
示例 1
使用内置数据集
考虑 mtcars 数据集,加载 tibble 包并使用瞥见功能查看 mtcars 数据的结构 -
library(tibble)输出结果glimpse(mtcars)
Rows: 32Columns: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
$ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~
示例 2
使用内置数据集
考虑 CO2 数据集,加载 tibble 包并使用瞥见功能查看 CO2 数据的结构 -
library(tibble)输出结果glimpse(CO2)
Rows: 84Columns: 5
$ Plant <ord> Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn2, Qn2, Qn2, Qn2, Qn2, ~
$ Type <fct> Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Queb~
$ Treatment <fct> nonchilled, nonchilled, nonchilled, nonchilled, nonchilled, ~
$ conc <dbl> 95, 175, 250, 350, 500, 675, 1000, 95, 175, 250, 350, 500, 6~
$ uptake <dbl> 16.0, 30.4, 34.8, 37.2, 35.3, 39.2, 39.7, 13.6, 27.3, 37.1, ~
示例 3
使用内置数据集
考虑 iris 数据集,加载 tibble 包并使用瞥见功能查看 iris 数据的结构 -
library(tibble)输出结果glimpse((iris)
Rows: 150Columns: 5
$Sepal.Length<dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.~
$Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.~
$Petal.Length<dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.~
$Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.~
$ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s~
示例 4
使用内置数据集
考虑睡眠数据集,加载 tibble 包并使用瞥见功能查看睡眠数据的结构 -
library(tibble)输出结果glimpse(sleep)
Rows: 20Columns: 3
$ extra <dbl> 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0, 1.9, 0.8, ~
$ group <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
$ ID <fct> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
例 5
使用内置数据集
考虑 ChickWeight 数据集,加载 tibble 包并使用瞥见功能查看 ChickWeight 数据的结构 -
library(tibble)输出结果glimpse((ChickWeight)
Rows: 578Columns: 4
$ weight <dbl> 42, 51, 59, 64, 76, 93, 106, 125, 149, 171, 199, 205, 40, 49, 5~
$ Time <dbl> 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 1~
$ Chick <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ~
$ Diet <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
例 6
使用内置数据集
考虑 DNase 数据集,加载 tibble 包并使用瞥见功能查看 DNase 数据的结构 -
library(tibble)输出结果glimpse((DNase)
Rows: 176Columns: 3
$ Run <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,~
$ conc <dbl> 0.04882812, 0.04882812, 0.19531250, 0.19531250, 0.39062500, 0.~
$ density <dbl> 0.017, 0.018, 0.121, 0.124, 0.206, 0.215, 0.377, 0.374, 0.614,~
例 7
使用内置数据集
考虑尼罗河数据集,加载 tibble 包并使用瞥见功能查看尼罗河数据的结构 -
library(tibble)输出结果glimpse(Nile)
Time-Series [1:100] from 1871 to 1970: 1120 1160 963 1210 1160 1160 813 1230 13701140 …
例 8
使用内置数据集
考虑 HairEyeColor 数据集,加载 tibble 包并使用瞥见功能查看 HairEyeColor 数据的结构 -
library(tibble)输出结果glimpse(HairEyeColor)
‘table’ num [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 …- attr(*, “dimnames”)=List of 3
..$ Hair: chr [1:4] “Black” “Brown” “Red” “Blond”
..$ Eye : chr [1:4] “Brown” “Blue” “Hazel” “Green”
..$ Sex : chr [1:2] “Male” “Female”
例 9
使用内置数据集
考虑 Indometh 数据集,加载 tibble 包并使用瞥见功能查看 Indometh 数据的结构 -
library(tibble)输出结果glimpse(Indometh)
Rows: 66Columns: 3
$ Subject <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~
$ time <dbl> 0.25, 0.50, 0.75, 1.00, 1.25, 2.00, 3.00, 4.00, 5.00, 6.00, 8.~
$ conc <dbl> 1.50, 0.94, 0.78, 0.48, 0.37, 0.19, 0.12, 0.11, 0.08, 0.07, 0.~
例 10
使用内置数据集
考虑 AirPassengers 数据集,加载 tibble 包并使用瞥见功能查看 AirPassengers 数据的结构 -
library(tibble)输出结果glimpse(AirPassengers)
Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
以上是 如何在不使用R中的str函数的情况下检查数据帧结构? 的全部内容, 来源链接: utcz.com/z/341434.html