如何在不使用R中的str函数的情况下检查数据帧结构?

要在 R 中不使用 str 函数检查数据帧结构,我们可以按照以下步骤操作 -

  • 首先,加载数据或创建新数据或使用内置数据集。

  • 然后,使用 tibble 包的瞥见功能。

示例 1

使用内置数据集

考虑 mtcars 数据集,加载 tibble 包并使用瞥见功能查看 mtcars 数据的结构 -

library(tibble)

glimpse(mtcars)

输出结果
Rows: 32

Columns: 11

$ mpg  <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~

$ cyl  <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~

$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~

$ hp   <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~

$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~

$ wt   <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~

$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~

$ vs   <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~

$ am   <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~

$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~

$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

示例 2

使用内置数据集

考虑 CO2 数据集,加载 tibble 包并使用瞥见功能查看 CO2 数据的结构 -

library(tibble)

glimpse(CO2)

输出结果
Rows: 84

Columns: 5

$ Plant     <ord> Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn2, Qn2, Qn2, Qn2, Qn2, ~

$ Type      <fct> Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Queb~

$ Treatment <fct> nonchilled, nonchilled, nonchilled, nonchilled, nonchilled, ~

$ conc      <dbl> 95, 175, 250, 350, 500, 675, 1000, 95, 175, 250, 350, 500, 6~

$ uptake    <dbl> 16.0, 30.4, 34.8, 37.2, 35.3, 39.2, 39.7, 13.6, 27.3, 37.1, ~

示例 3

使用内置数据集

考虑 iris 数据集,加载 tibble 包并使用瞥见功能查看 iris 数据的结构 -

library(tibble)

glimpse((iris)

输出结果
Rows: 150

Columns: 5

$Sepal.Length<dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.~

$Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.~

$Petal.Length<dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.~

$Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.~

$ Species      <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s~

示例 4

使用内置数据集

考虑睡眠数据集,加载 tibble 包并使用瞥见功能查看睡眠数据的结构 -

library(tibble)

glimpse(sleep)

输出结果
Rows: 20

Columns: 3

$ extra <dbl> 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0, 1.9, 0.8, ~

$ group <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

$ ID    <fct> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

例 5

使用内置数据集

考虑 ChickWeight 数据集,加载 tibble 包并使用瞥见功能查看 ChickWeight 数据的结构 -

library(tibble)

glimpse((ChickWeight)

输出结果
Rows: 578

Columns: 4

$ weight <dbl> 42, 51, 59, 64, 76, 93, 106, 125, 149, 171, 199, 205, 40, 49, 5~

$ Time   <dbl> 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 1~

$ Chick  <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ~

$ Diet   <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~

例 6

使用内置数据集

考虑 DNase 数据集,加载 tibble 包并使用瞥见功能查看 DNase 数据的结构 -

library(tibble)

glimpse((DNase)

输出结果
Rows: 176

Columns: 3

$ Run     <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,~

$ conc    <dbl> 0.04882812, 0.04882812, 0.19531250, 0.19531250, 0.39062500, 0.~

$ density <dbl> 0.017, 0.018, 0.121, 0.124, 0.206, 0.215, 0.377, 0.374, 0.614,~

例 7

使用内置数据集

考虑尼罗河数据集,加载 tibble 包并使用瞥见功能查看尼罗河数据的结构 -

library(tibble)

glimpse(Nile)

输出结果
Time-Series [1:100] from 1871 to 1970: 1120 1160 963 1210 1160 1160 813 1230 1370

1140 …

例 8

使用内置数据集

考虑 HairEyeColor 数据集,加载 tibble 包并使用瞥见功能查看 HairEyeColor 数据的结构 -

library(tibble)

glimpse(HairEyeColor)

输出结果
‘table’ num [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 …

- attr(*, “dimnames”)=List of 3

..$ Hair: chr [1:4] “Black” “Brown” “Red” “Blond”

..$ Eye : chr [1:4] “Brown” “Blue” “Hazel” “Green”

..$ Sex : chr [1:2] “Male” “Female”

例 9

使用内置数据集

考虑 Indometh 数据集,加载 tibble 包并使用瞥见功能查看 Indometh 数据的结构 -

library(tibble)

glimpse(Indometh)

输出结果
Rows: 66

Columns: 3

$ Subject <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~

$ time    <dbl> 0.25, 0.50, 0.75, 1.00, 1.25, 2.00, 3.00, 4.00, 5.00, 6.00, 8.~

$ conc    <dbl> 1.50, 0.94, 0.78, 0.48, 0.37, 0.19, 0.12, 0.11, 0.08, 0.07, 0.~

例 10

使用内置数据集

考虑 AirPassengers 数据集,加载 tibble 包并使用瞥见功能查看 AirPassengers 数据的结构 -

library(tibble)

glimpse(AirPassengers)

输出结果
Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...

以上是 如何在不使用R中的str函数的情况下检查数据帧结构? 的全部内容, 来源链接: utcz.com/z/341434.html

回到顶部