Pandas 数据框增、删、改、查、去重、抽样基本操作方法

总括

pandas的索引函数主要有三种:

loc 标签索引,行和列的名称

iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0

ix 是 iloc 和 loc的合体

at是loc的快捷方式

iat是iloc的快捷方式

建立测试数据集:

import pandas as pd

df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]})

print(df)

a b c

0 1 a A

1 2 b B

2 3 c C

行操作

选择某一行

print(df.loc[1,:])

a 2

b b

c B

Name: 1, dtype: object

选择多行

print(df.loc[1:2,:])#选择1:2行,slice为1

a b c

1 2 b B

2 3 c C

print(df.loc[::-1,:])#选择所有行,slice为-1,所以为倒序

a b c

2 3 c C

1 2 b B

0 1 a A

print(df.loc[0:2:2,:])#选择0至2行,slice为2,等同于print(df.loc[0:2:2,:])因为只有3行

a b c

0 1 a A

2 3 c C

条件筛选

普通条件筛选

print(df.loc[:,"a"]>2)#原理是首先做了一个判断,然后再筛选

0 False

1 False

2 True

Name: a, dtype: bool

print(df.loc[df.loc[:,"a"]>2,:])

a b c

2 3 c C

另外条件筛选还可以集逻辑运算符 | for or, & for and, and ~for not

In [129]: s = pd.Series(range(-3, 4))

In [132]: s[(s < -1) | (s > 0.5)]

Out[132]:

0 -3

1 -2

4 1

5 2

6 3

dtype: int64

isin

非索引列使用isin

In [141]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')

In [143]: s.isin([2, 4, 6])

Out[143]:

4 False

3 False

2 True

1 False

0 True

dtype: bool

In [144]: s[s.isin([2, 4, 6])]

Out[144]:

2 2

0 4

dtype: int64

索引列使用isin

In [145]: s[s.index.isin([2, 4, 6])]

Out[145]:

4 0

2 2

dtype: int64

# compare it to the following

In [146]: s[[2, 4, 6]]

Out[146]:

2 2.0

4 0.0

6 NaN

dtype: float64

结合any()/all()在多列索引时

In [151]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],

.....: 'ids2': ['a', 'n', 'c', 'n']})

.....:

In [156]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}

In [157]: row_mask = df.isin(values).all(1)

In [158]: df[row_mask]

Out[158]:

ids ids2 vals

0 a a 1

where()

In [1]: dates = pd.date_range('1/1/2000', periods=8)

In [2]: df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])

In [3]: df

Out[3]:

A B C D

2000-01-01 0.469112 -0.282863 -1.509059 -1.135632

2000-01-02 1.212112 -0.173215 0.119209 -1.044236

2000-01-03 -0.861849 -2.104569 -0.494929 1.071804

2000-01-04 0.721555 -0.706771 -1.039575 0.271860

2000-01-05 -0.424972 0.567020 0.276232 -1.087401

2000-01-06 -0.673690 0.113648 -1.478427 0.524988

2000-01-07 0.404705 0.577046 -1.715002 -1.039268

2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

In [162]: df.where(df < 0, -df)

Out[162]:

A B C D

2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166

2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824

2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059

2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203

2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416

2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718

2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048

2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838

DataFrame.where() differs from numpy.where()的区别

In [172]: df.where(df < 0, -df) == np.where(df < 0, df, -df)

当series对象使用where()时,则返回一个序列

In [141]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')

In [159]: s[s > 0]

Out[159]:

3 1

2 2

1 3

0 4

dtype: int64

In [160]: s.where(s > 0)

Out[160]:

4 NaN

3 1.0

2 2.0

1 3.0

0 4.0

dtype: float64

抽样筛选

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

当在有权重筛选时,未赋值的列权重为0,如果权重和不为1,则将会将每个权重除以总和。random_state可以设置抽样的种子(seed)。axis可是设置列随机抽样。

In [105]: df2 = pd.DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})

In [106]: df2.sample(n = 3, weights = 'weight_column')

Out[106]:

col1 weight_column

1 8 0.4

0 9 0.5

2 7 0.1

增加行

df.loc[3,:]=4

a b c

0 1.0 a A

1 2.0 b B

2 3.0 c C

3 4.0 4 4

插入行

pandas里并没有直接指定索引的插入行的方法,所以要自己设置

line = pd.DataFrame({df.columns[0]:"--",df.columns[1]:"--",df.columns[2]:"--"},index=[1])

df = pd.concat([df.loc[:0],line,df.loc[1:]]).reset_index(drop=True)#df.loc[:0]这里不能写成df.loc[0],因为df.loc[0]返回的是series

a b c

0 1.0 a A

1 -- -- --

2 2.0 b B

3 3.0 c C

4 4.0 4 4

交换行

df.loc[[1,2],:]=df.loc[[2,1],:].values

a b c

0 1 a A

1 3 c C

2 2 b B

删除行

df.drop(0,axis=0,inplace=True)

print(df)

a b c

1 2 b B

2 3 c C

注意

在以时间作为索引的数据框中,索引是以整形的方式来的。

In [39]: dfl = pd.DataFrame(np.random.randn(5,4), columns=list('ABCD'), index=pd.date_range('20130101',periods=5))

In [40]: dfl

Out[40]:

A B C D

2013-01-01 1.075770 -0.109050 1.643563 -1.469388

2013-01-02 0.357021 -0.674600 -1.776904 -0.968914

2013-01-03 -1.294524 0.413738 0.276662 -0.472035

2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

2013-01-05 0.895717 0.805244 -1.206412 2.565646

In [41]: dfl.loc['20130102':'20130104']

Out[41]:

A B C D

2013-01-02 0.357021 -0.674600 -1.776904 -0.968914

2013-01-03 -1.294524 0.413738 0.276662 -0.472035

2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

列操作

选择某一列

print(df.loc[:,"a"])

0 1

1 2

2 3

Name: a, dtype: int64

选择多列

print(df.loc[:,"a":"b"])

a b

0 1 a

1 2 b

2 3 c

增加列,如果对已有的列,则是赋值

df.loc[:,"d"]=4

a b c d

0 1 a A 4

1 2 b B 4

2 3 c C 4

交换两列的值

df.loc[:,['b', 'a']] = df.loc[:,['a', 'b']].values

print(df)

a b c

0 a 1 A

1 b 2 B

2 c 3 C

删除列

1)直接del DF[‘column-name']

2)采用drop方法,有下面三种等价的表达式:

DF= DF.drop(‘column_name', 1);

DF.drop(‘column_name',axis=1, inplace=True)

DF.drop([DF.columns[[0,1,]]], axis=1,inplace=True)

df.drop("a",axis=1,inplace=True)

print(df)

b c

0 a A

1 b B

2 c C

还有一些其他的功能:

切片df.loc[::,::]

选择随机抽样df.sample()

去重.duplicated()

查询.lookup

以上这篇Pandas 数据框增、删、改、查、去重、抽样基本操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Pandas 数据框增、删、改、查、去重、抽样基本操作方法 的全部内容, 来源链接: utcz.com/z/339798.html

回到顶部