基于sklearn实现Bagging算法(python)

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。

实现Bagging算法的代码如下:

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.preprocessing import StandardScaler

import csv

from sklearn.cross_validation import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

data=[]

traffic_feature=[]

traffic_target=[]

csv_file = csv.reader(open('packSize_all.csv'))

for content in csv_file:

content=list(map(float,content))

if len(content)!=0:

data.append(content)

traffic_feature.append(content[0:6])//存放数据集的特征

traffic_target.append(content[-1])//存放数据集的标签

print('data=',data)

print('traffic_feature=',traffic_feature)

print('traffic_target=',traffic_target)

scaler = StandardScaler() # 标准化转换

scaler.fit(traffic_feature) # 训练标准化对象

traffic_feature= scaler.transform(traffic_feature) # 转换数据集

feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)

tree=DecisionTreeClassifier(criterion='entropy', max_depth=None)

# n_estimators=500:生成500个决策树

clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1)

clf.fit(feature_train,target_train)

predict_results=clf.predict(feature_test)

print(accuracy_score(predict_results, target_test))

conf_mat = confusion_matrix(target_test, predict_results)

print(conf_mat)

print(classification_report(target_test, predict_results))

运行结果如图所示:

以上是 基于sklearn实现Bagging算法(python) 的全部内容, 来源链接: utcz.com/z/336272.html

回到顶部