Java多线程 ReentrantLock互斥锁详解

加锁和解锁

我们来看下ReentrantLock的基本用法

ThreadDomain35类

public class ThreadDomain35 {

private Lock lock = new ReentrantLock();

public void testMethod()

{

try

{

lock.lock();

for (int i = 0; i < 2; i++)

{

System.out.println("ThreadName = " + Thread.currentThread().getName() + ", i = " + i);

}

}

finally

{

lock.unlock();

}

}

}

线程和main方法

public class MyThread35 extends Thread {

private ThreadDomain35 td;

public MyThread35(ThreadDomain35 td)

{

this.td = td;

}

public void run()

{

td.testMethod();

}

public static void main(String[] args)

{

ThreadDomain35 td = new ThreadDomain35();

MyThread35 mt0 = new MyThread35(td);

MyThread35 mt1 = new MyThread35(td);

MyThread35 mt2 = new MyThread35(td);

mt0.start();

mt1.start();

mt2.start();

}

}

输出结果

ThreadName = Thread-2, i = 0

ThreadName = Thread-2, i = 1

ThreadName = Thread-0, i = 0

ThreadName = Thread-0, i = 1

ThreadName = Thread-1, i = 0

ThreadName = Thread-1, i = 1

一个线程必须执行完才能执行下一个线程,说明ReentrantLock可以加锁。

ReentrantLock持有的对象监视器和synchronized不同

ThreadDomain37类,methodB用synchronized修饰

public class ThreadDomain37 {

private Lock lock = new ReentrantLock();

public void methodA()

{

try

{

lock.lock();

System.out.println("MethodA begin ThreadName = " + Thread.currentThread().getName());

Thread.sleep(5000);

System.out.println("MethodA end ThreadName = " + Thread.currentThread().getName());

}

catch (InterruptedException e)

{

e.printStackTrace();

}

finally

{

lock.unlock();

}

}

public synchronized void methodB()

{

System.out.println("MethodB begin ThreadName = " + Thread.currentThread().getName());

System.out.println("MethodB begin ThreadName = " + Thread.currentThread().getName());

}

}

MyThread37_0类

public class MyThread37_0 extends Thread {

private ThreadDomain37 td;

public MyThread37_0(ThreadDomain37 td)

{

this.td = td;

}

public void run()

{

td.methodA();

}

}

MyThread37_1类

public class MyThread37_1 extends Thread {

private ThreadDomain37 td;

public MyThread37_1(ThreadDomain37 td)

{

this.td = td;

}

public void run()

{

td.methodB();

}

}

MyThread37_main方法

public class MyThread37_main {

public static void main(String[] args)

{

ThreadDomain37 td = new ThreadDomain37();

MyThread37_0 mt0 = new MyThread37_0(td);

MyThread37_1 mt1 = new MyThread37_1(td);

mt0.start();

mt1.start();

}

}

运行结果如下

MethodA begin ThreadName = Thread-0

MethodB begin ThreadName = Thread-1

MethodB begin ThreadName = Thread-1

MethodA end ThreadName = Thread-0

加了synchronized依然是异步执行,说明ReentrantLock和synchronized持有的对象监视器不同。ReentrantLock需要手动加锁和释放锁。

Condition

基本用法

synchronized与wait()和nitofy()/notifyAll()方法可以实现等待/唤醒模型,ReentrantLock同样可以,需要借助Condition的await()和signal/signalAll(),await()释放锁。

ThreadDomain38类

public class ThreadDomain38 {

private Lock lock = new ReentrantLock();

private Condition condition = lock.newCondition();

public void await()

{

try

{

lock.lock();

System.out.println("await时间为:" + System.currentTimeMillis());

condition.await();

System.out.println("await等待结束");

}

catch (InterruptedException e)

{

e.printStackTrace();

}

finally

{

lock.unlock();

}

}

public void signal()

{

try

{

lock.lock();

System.out.println("signal时间为:" + System.currentTimeMillis());

condition.signal();

System.out.println("signal等待结束");

}

finally

{

lock.unlock();

}

}

}

MyThread38类,线程和main方法

public class MyThread38 extends Thread

{

private ThreadDomain38 td;

public MyThread38(ThreadDomain38 td)

{

this.td = td;

}

public void run()

{

td.await();

}

public static void main(String[] args) throws Exception

{

ThreadDomain38 td = new ThreadDomain38();

MyThread38 mt = new MyThread38(td);

mt.start();

Thread.sleep(3000);

td.signal();

}

}


运行结果如下

await时间为:1563505465346

signal时间为:1563505468345

signal等待结束

await等待结束

可以看到,ReentrantLock和Condition实现了等待/通知模型。

一个Lock可以创建多个Condition;

notify()唤醒的线程是随机的,signal()可以有选择性地唤醒。

Condition选择 唤醒/等待

现在看一个利用Condition选择等待和唤醒的例子

ThreadDomain47类,定义add和sub方法

public class ThreadDomain47 {

private final Lock lock = new ReentrantLock();

private final Condition addCondition = lock.newCondition();

private final Condition subCondition = lock.newCondition();

private static int num = 0;

private List<String> lists = new LinkedList<String>();

public void add() {

lock.lock();

try {

while(lists.size() == 10) {//当集合已满,则"添加"线程等待

addCondition.await();

}

num++;

lists.add("add Banana" + num);

System.out.println("The Lists Size is " + lists.size());

System.out.println("The Current Thread is " + "增加线程");

System.out.println("==============================");

this.subCondition.signal();

} catch (InterruptedException e) {

e.printStackTrace();

} finally {//释放锁

lock.unlock();

}

}

public void sub() {

lock.lock();

try {

while(lists.size() == 0) {//当集合为空时,"减少"线程等待

subCondition.await();

}

String str = lists.get(0);

lists.remove(0);

System.out.println("The Token Banana is [" + str + "]");

System.out.println("The Current Thread is " + "减少线程");

System.out.println("==============================");

num--;

addCondition.signal();

} catch (InterruptedException e) {

e.printStackTrace();

} finally {

lock.unlock();

}

}

}

MyThread40_0类,增加线程

public class MyThread40_0 implements Runnable {

private ThreadDomain47 task;

public MyThread40_0(ThreadDomain47 task) {

this.task = task;

}

@Override

public void run() {

task.add();

}

}

MyThread40_1类,减少线程

public class MyThread40_1 implements Runnable {

private ThreadDomain47 task;

public MyThread40_1(ThreadDomain47 task) {

this.task = task;

}

@Override

public void run() {

task.sub();

}

}

main方法,启动线程

public class MyThread40_main {

public static void main(String[] args) {

ThreadDomain47 task = new ThreadDomain47();

Thread t1=new Thread(new MyThread40_0(task));

Thread t3=new Thread(new MyThread40_0(task));

Thread t7=new Thread(new MyThread40_0(task));

Thread t8=new Thread(new MyThread40_0(task));

Thread t2 = new Thread(new MyThread40_1(task));

Thread t4 = new Thread(new MyThread40_1(task));

Thread t5 = new Thread(new MyThread40_1(task));

Thread t6 = new Thread(new MyThread40_1(task));

t1.start();

t2.start();

t3.start();

t4.start();

t5.start();

t6.start();

t7.start();

t8.start();

}

}

输出结果如下

The Lists Size is 1

The Current Thread is 增加线程

==============================

The Lists Size is 2

The Current Thread is 增加线程

==============================

The Token Banana is [add Banana1]

The Current Thread is 减少线程

==============================

The Token Banana is [add Banana2]

The Current Thread is 减少线程

==============================

The Lists Size is 1

The Current Thread is 增加线程

==============================

The Token Banana is [add Banana1]

The Current Thread is 减少线程

==============================

The Lists Size is 1

The Current Thread is 增加线程

==============================

The Token Banana is [add Banana1]

The Current Thread is 减少线程

==============================

可以看到,lists的数量不会增加太多,也不会减少太多。当集合满,使增加线程等待,唤醒减少线程;当集合空,使减少线程等待,唤醒增加线程。我们用wait()/notify()机制无法实现该效果,这里体现了Condition的强大之处。

ReentrantLock中的方法

公平锁和非公平锁

ReentrantLock可以指定公平锁和非公平锁,公平锁根据线程运行的顺序获取锁,非公平锁则通过抢占获得锁,不按线程运行顺序。synchronized是非公平锁。在ReentrantLock(boolean fair)构造函数传入true/false来指定公平锁/非公平锁。

看个例子

ThreadDomain39类和main方法

public class ThreadDomain39 {

private Lock lock = new ReentrantLock(true);

public void testMethod()

{

try

{

lock.lock();

System.out.println("ThreadName" + Thread.currentThread().getName() + "获得锁");

}

finally

{

lock.unlock();

}

}

public static void main(String[] args) throws Exception

{

final ThreadDomain39 td = new ThreadDomain39();

Runnable runnable = new Runnable()

{

public void run()

{

System.out.println("线程" + Thread.currentThread().getName() + "运行了");

td.testMethod();

}

};

Thread[] threads = new Thread[5];

for (int i = 0; i < 5; i++)

threads[i] = new Thread(runnable);

for (int i = 0; i < 5; i++)

threads[i].start();

}

}

输出结果如下

线程Thread-0运行了

ThreadNameThread-0获得锁

线程Thread-1运行了

线程Thread-2运行了

ThreadNameThread-1获得锁

线程Thread-3运行了

线程Thread-4运行了

ThreadNameThread-2获得锁

ThreadNameThread-3获得锁

ThreadNameThread-4获得锁

可以看到公平锁获得锁的顺序和线程运行的顺序相同。公平锁尽可能地让线程获取锁的顺序和线程运行顺序保持一致,再执行几次,可能不一致。

ReentrantLock构造函数传入false,输出结果如下:

线程Thread-0运行了

线程Thread-2运行了

线程Thread-4运行了

线程Thread-3运行了

ThreadNameThread-0获得锁

线程Thread-1运行了

ThreadNameThread-1获得锁

ThreadNameThread-2获得锁

ThreadNameThread-4获得锁

ThreadNameThread-3获得锁

非公平锁获得锁的顺序和线程运行的顺序不同

getHoldCount()

获取当前线程调用lock()的次数,一般debug使用。

看个例子

public class ThreadDomain40 {

private ReentrantLock lock = new ReentrantLock();

public void testMethod1()

{

try

{

lock.lock();

System.out.println("testMethod1 getHoldCount = " + lock.getHoldCount());

testMethod2();

}

finally

{

lock.unlock();

}

}

public void testMethod2()

{

try

{

lock.lock();

System.out.println("testMethod2 getHoldCount = " + lock.getHoldCount());

}

finally

{

lock.unlock();

}

}

public static void main(String[] args)

{

ThreadDomain40 td = new ThreadDomain40();

td.testMethod1();

}

}

输出结果如下

testMethod1 getHoldCount = 1

testMethod2 getHoldCount = 2

可以看到,testMethod1()被调用了一次,testMethod2()被调用了两次,ReentrantLock和synchronized一样,锁都是可重入的。

getQueueLength()和isFair()

getQueueLength()获取等待的线程数量,isFair()判断是否是公平锁。

ThreadDomain41类和main方法,Thread.sleep(2000)使第一个线程之后的线程都来不及启动,Thread.sleep(Integer.MAX_VALUE)使线程无法unlock()。

public class ThreadDomain41 {

public ReentrantLock lock = new ReentrantLock();

public void testMethod()

{

try

{

lock.lock();

System.out.println("ThreadName = " + Thread.currentThread().getName() + "进入方法!");

System.out.println("是否公平锁?" + lock.isFair());

Thread.sleep(Integer.MAX_VALUE);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

finally

{

lock.unlock();

}

}

public static void main(String[] args) throws InterruptedException

{

final ThreadDomain41 td = new ThreadDomain41();

Runnable runnable = new Runnable()

{

public void run()

{

td.testMethod();

}

};

Thread[] threads = new Thread[10];

for (int i = 0; i < 10; i++)

threads[i] = new Thread(runnable);

for (int i = 0; i < 10; i++)

threads[i].start();

Thread.sleep(2000);

System.out.println("有" + td.lock.getQueueLength() + "个线程正在等待!");

}

}

输出结果如下

ThreadName = Thread-1进入方法!

是否公平锁?false

有9个线程正在等待!

ReentrantLock默认是非公平锁,只有一个线程lock(),9个线程在等待。

hasQueuedThread()和hasQueuedThreads()

hasQueuedThread(Thread thread)查询指定线程是否在等待锁,hasQueuedThreads()查询是否有线程在等待锁。

看个例子

ThreadDomain41类和main方法,和上面例子类似,Thread.sleep(Integer.MAX_VALUE); 让线程不释放锁,Thread.sleep(2000);让第一个线程之后的线程都无法启动。

public class ThreadDomain42 extends ReentrantLock {

public void waitMethod()

{

try

{

lock();

Thread.sleep(Integer.MAX_VALUE);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

finally

{

unlock();

}

}

public static void main(String[] args) throws InterruptedException

{

final ThreadDomain42 td = new ThreadDomain42();

Runnable runnable = new Runnable()

{

public void run()

{

td.waitMethod();

}

};

Thread t0 = new Thread(runnable);

t0.start();

Thread.sleep(500);

Thread t1 = new Thread(runnable);

t1.start();

Thread.sleep(500);

Thread t2 = new Thread(runnable);

t2.start();

Thread.sleep(500);

System.out.println("t0 is waiting?" + td.hasQueuedThread(t0));

System.out.println("t1 is waiting?" + td.hasQueuedThread(t1));

System.out.println("t2 is waiting?" + td.hasQueuedThread(t2));

System.out.println("Is any thread waiting?" + td.hasQueuedThreads());

}

}

输出结果如下

t0 is waiting?false

t1 is waiting?true

t2 is waiting?true

Is any thread waiting?true

t0线程获得了锁,t0没有释放锁,导致t1,t2等待锁。

isHeldByCurrentThread()和isLocked()

isHeldByCurrentThread()判断锁是否由当前线程持有,isLocked()判断锁是否由任意线程持有。

请看示例

ThreadDomain43类和main方法

public class ThreadDomain43 extends ReentrantLock {

public void testMethod()

{

try

{

lock();

System.out.println(Thread.currentThread().getName() + "线程持有了锁!");

System.out.println(Thread.currentThread().getName() + "线程是否持有锁?" +

isHeldByCurrentThread());

System.out.println("是否任意线程持有了锁?" + isLocked());

} finally

{

unlock();

}

}

public void testHoldLock()

{

System.out.println(Thread.currentThread().getName() + "线程是否持有锁?" +

isHeldByCurrentThread());

System.out.println("是否任意线程持有了锁?" + isLocked());

}

public static void main(String[] args)

{

final ThreadDomain43 td = new ThreadDomain43();

Runnable runnable0 = new Runnable()

{

public void run()

{

td.testMethod();

}

};

Runnable runnable1 = new Runnable()

{

public void run()

{

td.testHoldLock();

}

};

Thread t0 = new Thread(runnable0);

Thread t1 = new Thread(runnable1);

t0.start();

t1.start();

}

}

输出结果如下

Thread-0线程持有了锁!

Thread-1线程是否持有锁?false

Thread-0线程是否持有锁?true

是否任意线程持有了锁?true

是否任意线程持有了锁?true

Thread-0线程testMethod方法持有锁,Thread-1线程testHoldLock方法没有lock操作,所以不持有锁。

tryLock()和tryLock(long timeout, TimeUnit unit)

tryLock()有加锁的功能,获得了锁且锁没有被另外一个线程持有,此时返回true,否则返回false,可以有效避免死锁。tryLock(long timeout, TimeUnit unit)表示在给定的时间内获得了锁,锁没有被其他线程持有,且不处于中断状态。返回true,否则返回false;

看个例子

public class MyThread39 {

public static void main(String[] args) {

System.out.println("开始");

final Lock lock = new ReentrantLock();

new Thread() {

@Override

public void run() {

String tName = Thread.currentThread().getName();

if (lock.tryLock()) {

System.out.println(tName + "获取到锁!");

} else {

System.out.println(tName + "获取不到锁!");

return;

}

try {

for (int i = 0; i < 5; i++) {

System.out.println(tName + ":" + i);

}

Thread.sleep(5000);

} catch (Exception e) {

System.out.println(tName + "出错了!");

} finally {

System.out.println(tName + "释放锁!");

lock.unlock();

}

}

}.start();

new Thread() {

@Override

public void run() {

String tName = Thread.currentThread().getName();

try {

if (lock.tryLock(1,TimeUnit.SECONDS)) {

System.out.println(tName + "获取到锁!");

} else {

System.out.println(tName + "获取不到锁!");

return;

}

} catch (InterruptedException e) {

e.printStackTrace();

}

try {

for (int i = 0; i < 5; i++) {

System.out.println(tName + ":" + i);

}

} catch (Exception e) {

System.out.println(tName + "出错");

} finally {

System.out.println(tName + "释放锁!");

lock.unlock();

}

}

}.start();

System.out.println("结束");

}

}

输出结果如下

开始

Thread-0获取到锁!

Thread-0:0

Thread-0:1

Thread-0:2

Thread-0:3

Thread-0:4

结束

Thread-1获取不到锁!

Thread-0释放锁!

Thread-0先获得了锁,且sleep了5秒,导致Thread-1获取不到锁,我们给Thread-1的tryLock设置1秒,一秒内获取不到锁就会返回false。

如果Thread.sleep(0),那么Thread-0和Thread-1都可以获得锁,园友可以自己试下。

synchronized和ReentrantLock的比较

1.synchronized关键字是语法层面的实现,ReentrantLock要手动lock()和unlock();

2.synchronized是不公平锁,ReentrantLock可以指定是公平锁还是非公平锁;

3.synchronized等待/唤醒机制是随机的,ReentrantLock借助Condition的等待/唤醒机制可以自行选择等待/唤醒;

以上是 Java多线程 ReentrantLock互斥锁详解 的全部内容, 来源链接: utcz.com/z/336208.html

回到顶部