Python通过两个dataframe用for循环求笛卡尔积

合并两个没有共同列的dataframe,相当于按行号求笛卡尔积。

最终效果如下

以下代码是参考别人的代码修改的:

def cartesian_df(A,B):

new_df = pd.DataFrame(columns=list(A).extend(list(B)))

for _,A_row in A.iterrows():

for _,B_row in B.iterrows():

row = A_row.append(B_row)

new_df = new_df.append(row,ignore_index=True)

return new_df

#这个方法,如果两张表列名重复会出错

这段代码的思路是对两个表的每一行进行循环,运行速度比较慢,复杂度应该是O(m*n),m是A表的行数,n是B表的行数。

因为我用到的合并表行数比较多,时间太慢,所以针对上面的代码进行了优化。

思路是利用dataframe的merge功能,先循环复制A表,将循环次数添加为列,直接使用merge合并,复杂度应该为O(n)(n是B表的行数),代码如下:

def cartesian_df(df_a,df_b):

'求两个dataframe的笛卡尔积'

#df_a 复制n次,索引用复制次数

new_df_a = pd.DataFrame(columns=list(df_a))

for i in range(0,df_b.shape[0]):

df_a['merge_index'] = i

new_df_a = new_df_a.append(df_a,ignore_index=True)

#df_b 设置索引为行数

df_b.reset_index(inplace = True, drop =True)

df_b['merge_index'] = df_b.index

#merge

new_df = pd.merge(new_df_a,df_b,on=['merge_index'],how='left').drop(['merge_index'],axis = 1)

return new_df

#两个原始表中不能有列名'merge_index'

使用一张8行的表和一张142行的表进行测试,优化前的方法用时:5.560689926147461秒

优化后的方法用时:0.1296539306640625秒(142行的表作为b表)

根据计算原理,将行数少的表放在b表可以更快,测试用时:0.021603107452392578秒(8行的表作为b表)

这个速度已经达到预期,基本感觉不到等待,优化完成。

以上是 Python通过两个dataframe用for循环求笛卡尔积 的全部内容, 来源链接: utcz.com/z/335978.html

回到顶部