pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解

如题:只需要给定输出特征图的大小就好,其中通道数前后不发生变化。具体如下:

AdaptiveAvgPool2d

CLASStorch.nn.AdaptiveAvgPool2d(output_size)[SOURCE]

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

Parameters

output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a int, or None which means the size will be the same as that of the input.

Examples

>>> # target output size of 5x7

>>> m = nn.AdaptiveAvgPool2d((5,7))

>>> input = torch.randn(1, 64, 8, 9)

>>> output = m(input)

>>> # target output size of 7x7 (square)

>>> m = nn.AdaptiveAvgPool2d(7)

>>> input = torch.randn(1, 64, 10, 9)

>>> output = m(input)

>>> # target output size of 10x7

>>> m = nn.AdaptiveMaxPool2d((None, 7))

>>> input = torch.randn(1, 64, 10, 9)

>>> output = m(input)

>>> input = torch.randn(1, 3, 3, 3)

>>> input

tensor([[[[ 0.6574, 1.5219, -1.3590],

[-0.1561, 2.7337, -1.8701],

[-0.8572, 1.0238, -1.9784]],

[[ 0.4284, 1.4862, 0.3352],

[-0.7796, -0.8020, -0.1243],

[-1.2461, -1.7069, 0.1517]],

[[ 1.4593, -0.1287, 0.5369],

[ 0.6562, 0.0616, 0.2611],

[-1.0301, 0.4097, -1.9269]]]])

>>> m = nn.AdaptiveAvgPool2d((2, 2))

>>> output = m(input)

>>> output

tensor([[[[ 1.1892, 0.2566],

[ 0.6860, -0.0227]],

[[ 0.0833, 0.2238],

[-1.1337, -0.6204]],

[[ 0.5121, 0.1827],

[ 0.0243, -0.2986]]]])

>>> 0.6574+1.5219+2.7337-0.1561

4.7569

>>> 4.7569/4

1.189225

>>>

以上这篇pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解 的全部内容, 来源链接: utcz.com/z/332429.html

回到顶部