创建管道并从已创建的 DataFrame 中删除一行 - Python Pandas
使用pdpipe 库的ValDrop () 方法从已经创建的 Pandas DataFrame 中删除一行。首先,导入所需的 pdpipe 和 pandas 库及其各自的别名 -
import pdpipe as pdpimport pandas as pd
让我们创建一个 DataFrame。在这里,我们有两列 -
dataFrame = pd.DataFrame({
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
}
)
现在,使用valdDrop()方法删除一行-
dataFrame = pdp.ValDrop(['Jaguar'],'Car').apply(dataFrame)
示例
以下是完整的代码 -
import pdpipe as pdp输出结果import pandas as pd
# 检查多余单位的功能
def demo(x):
if x >= 100:
return "OverStock"
else:
return "UnderStock"
# 创建数据帧
dataFrame = pd.DataFrame(
{
"Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90]
}
)
print("DataFrame ...\n",dataFrame)
# adding a new column "Stock" 及其基于已创建列的值 "Units"
dataFrame['Stock'] = dataFrame['Units'].apply(demo)
print("\n DataFrame with a new column...\n",dataFrame)
# 用 pdp 删除一行
dataFrame = pdp.ValDrop(['Jaguar'],'Car').apply(dataFrame)
print("\n DataFrame after removing a row...\n",dataFrame)
这将产生以下输出 -
DataFrame ...Car Units
0 BMW 100
1 Lexus 150
2 Audi 110
3 Mustang 80
4 Bentley 110
5 Jaguar 90
DataFrame with a new column...
Car Units Stock
0 BMW 100 OverStock
1 Lexus 150 OverStock
2 Audi 110 OverStock
3 Mustang 80 UnderStock
4 Bentley 110 OverStock
5 Jaguar 90 UnderStock
DataFrame after removing a value...
Car Units Stock
0 BMW 100 OverStock
1 Lexus 150 OverStock
2 Audi 110 OverStock
3 Mustang 80 UnderStock
4 Bentley 110 OverStock
以上是 创建管道并从已创建的 DataFrame 中删除一行 - Python Pandas 的全部内容, 来源链接: utcz.com/z/331694.html