Python谱减法语音降噪实例

代码中用到了nextpow2,其中n = nextpow2(x) 表示最接近x的2的n次幂。

#!/usr/bin/env python

import numpy as np

import wave

import nextpow2

import math

# 打开WAV文档

f = wave.open("filename.wav")

# 读取格式信息

# (nchannels, sampwidth, framerate, nframes, comptype, compname)

params = f.getparams()

nchannels, sampwidth, framerate, nframes = params[:4]

fs = framerate

# 读取波形数据

str_data = f.readframes(nframes)

f.close()

# 将波形数据转换为数组

x = np.fromstring(str_data, dtype=np.short)

# 计算参数

len_ = 20 * fs // 1000

PERC = 50

len1 = len_ * PERC // 100

len2 = len_ - len1

# 设置默认参数

Thres = 3

Expnt = 2.0

beta = 0.002

G = 0.9

# 初始化汉明窗

win = np.hamming(len_)

# normalization gain for overlap+add with 50% overlap

winGain = len2 / sum(win)

# Noise magnitude calculations - assuming that the first 5 frames is noise/silence

nFFT = 2 * 2 ** (nextpow2.nextpow2(len_))

noise_mean = np.zeros(nFFT)

j = 0

for k in range(1, 6):

noise_mean = noise_mean + abs(np.fft.fft(win * x[j:j + len_], nFFT))

j = j + len_

noise_mu = noise_mean / 5

# --- allocate memory and initialize various variables

k = 1

img = 1j

x_old = np.zeros(len1)

Nframes = len(x) // len2 - 1

xfinal = np.zeros(Nframes * len2)

# ========================= Start Processing ===============================

for n in range(0, Nframes):

# Windowing

insign = win * x[k-1:k + len_ - 1]

# compute fourier transform of a frame

spec = np.fft.fft(insign, nFFT)

# compute the magnitude

sig = abs(spec)

# save the noisy phase information

theta = np.angle(spec)

SNRseg = 10 * np.log10(np.linalg.norm(sig, 2) ** 2 / np.linalg.norm(noise_mu, 2) ** 2)

def berouti(SNR):

if -5.0 <= SNR <= 20.0:

a = 4 - SNR * 3 / 20

else:

if SNR < -5.0:

a = 5

if SNR > 20:

a = 1

return a

def berouti1(SNR):

if -5.0 <= SNR <= 20.0:

a = 3 - SNR * 2 / 20

else:

if SNR < -5.0:

a = 4

if SNR > 20:

a = 1

return a

if Expnt == 1.0: # 幅度谱

alpha = berouti1(SNRseg)

else: # 功率谱

alpha = berouti(SNRseg)

#############

sub_speech = sig ** Expnt - alpha * noise_mu ** Expnt;

# 当纯净信号小于噪声信号的功率时

diffw = sub_speech - beta * noise_mu ** Expnt

# beta negative components

def find_index(x_list):

index_list = []

for i in range(len(x_list)):

if x_list[i] < 0:

index_list.append(i)

return index_list

z = find_index(diffw)

if len(z) > 0:

# 用估计出来的噪声信号表示下限值

sub_speech[z] = beta * noise_mu[z] ** Expnt

# --- implement a simple VAD detector --------------

if SNRseg < Thres: # Update noise spectrum

noise_temp = G * noise_mu ** Expnt + (1 - G) * sig ** Expnt # 平滑处理噪声功率谱

noise_mu = noise_temp ** (1 / Expnt) # 新的噪声幅度谱

# flipud函数实现矩阵的上下翻转,是以矩阵的“水平中线”为对称轴

# 交换上下对称元素

sub_speech[nFFT // 2 + 1:nFFT] = np.flipud(sub_speech[1:nFFT // 2])

x_phase = (sub_speech ** (1 / Expnt)) * (np.array([math.cos(x) for x in theta]) + img * (np.array([math.sin(x) for x in theta])))

# take the IFFT

xi = np.fft.ifft(x_phase).real

# --- Overlap and add ---------------

xfinal[k-1:k + len2 - 1] = x_old + xi[0:len1]

x_old = xi[0 + len1:len_]

k = k + len2

# 保存文件

wf = wave.open('outfile.wav', 'wb')

# 设置参数

wf.setparams(params)

# 设置波形文件 .tostring()将array转换为data

wave_data = (winGain * xfinal).astype(np.short)

wf.writeframes(wave_data.tostring())

wf.close()

以上这篇Python谱减法语音降噪实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Python谱减法语音降噪实例 的全部内容, 来源链接: utcz.com/z/328232.html

回到顶部