python保存log日志,实现用log日志画图

在神经网络训练中,我们常常需要画出loss function的变化图,log日志里会显示每一次迭代的loss function的值,于是我们先把log日志保存为log.txt文档,再利用这个文档来画图。   

1,先来产生一个log日志。

import mxnet as mx

import numpy as np

import os

import logging

logging.getLogger().setLevel(logging.DEBUG)

# Training data

logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存为log.txt

train_data = np.random.uniform(0, 1, [100, 2])

train_label = np.array([train_data[i][0] + 2 * train_data[i][1] for i in range(100)])

batch_size = 1

num_epoch=5

# Evaluation Data

eval_data = np.array([[7,2],[6,10],[12,2]])

eval_label = np.array([11,26,16])

train_iter = mx.io.NDArrayIter(train_data,train_label, batch_size, shuffle=True,label_name='lin_reg_label')

eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)

X = mx.sym.Variable('data')

Y = mx.sym.Variable('lin_reg_label')

fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 1)

lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro")

model = mx.mod.Module(

symbol = lro ,

data_names=['data'],

label_names = ['lin_reg_label'] # network structure

)

model.fit(train_iter, eval_iter,

optimizer_params={'learning_rate':0.005, 'momentum': 0.9},

num_epoch=20,

eval_metric='mse',)

model.predict(eval_iter).asnumpy()

metric = mx.metric.MSE()

model.score(eval_iter, metric)

上面的代码中logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存为log.txt 就是把log日志保存为log.txt文件。   

2,log.txt文档如下。

INFO:root:Epoch[0] Train-mse=0.470638

INFO:root:Epoch[0] Time cost=0.047

INFO:root:Epoch[0] Validation-mse=73.642301

INFO:root:Epoch[1] Train-mse=0.082987

INFO:root:Epoch[1] Time cost=0.047

INFO:root:Epoch[1] Validation-mse=41.625072

INFO:root:Epoch[2] Train-mse=0.044817

INFO:root:Epoch[2] Time cost=0.063

INFO:root:Epoch[2] Validation-mse=23.743375

INFO:root:Epoch[3] Train-mse=0.024459

INFO:root:Epoch[3] Time cost=0.063

INFO:root:Epoch[3] Validation-mse=13.511120

INFO:root:Epoch[4] Train-mse=0.013431

INFO:root:Epoch[4] Time cost=0.063

INFO:root:Epoch[4] Validation-mse=7.670062

INFO:root:Epoch[5] Train-mse=0.007408

INFO:root:Epoch[5] Time cost=0.063

INFO:root:Epoch[5] Validation-mse=4.344374

INFO:root:Epoch[6] Train-mse=0.004099

INFO:root:Epoch[6] Time cost=0.063

INFO:root:Epoch[6] Validation-mse=2.455608

INFO:root:Epoch[7] Train-mse=0.002274

INFO:root:Epoch[7] Time cost=0.062

INFO:root:Epoch[7] Validation-mse=1.385449

INFO:root:Epoch[8] Train-mse=0.001263

INFO:root:Epoch[8] Time cost=0.063

INFO:root:Epoch[8] Validation-mse=0.780387

INFO:root:Epoch[9] Train-mse=0.000703

INFO:root:Epoch[9] Time cost=0.063

INFO:root:Epoch[9] Validation-mse=0.438943

INFO:root:Epoch[10] Train-mse=0.000391

INFO:root:Epoch[10] Time cost=0.125

INFO:root:Epoch[10] Validation-mse=0.246581

INFO:root:Epoch[11] Train-mse=0.000218

INFO:root:Epoch[11] Time cost=0.047

INFO:root:Epoch[11] Validation-mse=0.138368

INFO:root:Epoch[12] Train-mse=0.000121

INFO:root:Epoch[12] Time cost=0.047

INFO:root:Epoch[12] Validation-mse=0.077573

INFO:root:Epoch[13] Train-mse=0.000068

INFO:root:Epoch[13] Time cost=0.063

INFO:root:Epoch[13] Validation-mse=0.043454

INFO:root:Epoch[14] Train-mse=0.000038

INFO:root:Epoch[14] Time cost=0.063

INFO:root:Epoch[14] Validation-mse=0.024325

INFO:root:Epoch[15] Train-mse=0.000021

INFO:root:Epoch[15] Time cost=0.063

INFO:root:Epoch[15] Validation-mse=0.013609

INFO:root:Epoch[16] Train-mse=0.000012

INFO:root:Epoch[16] Time cost=0.063

INFO:root:Epoch[16] Validation-mse=0.007610

INFO:root:Epoch[17] Train-mse=0.000007

INFO:root:Epoch[17] Time cost=0.063

INFO:root:Epoch[17] Validation-mse=0.004253

INFO:root:Epoch[18] Train-mse=0.000004

INFO:root:Epoch[18] Time cost=0.063

INFO:root:Epoch[18] Validation-mse=0.002376

INFO:root:Epoch[19] Train-mse=0.000002

INFO:root:Epoch[19] Time cost=0.063

INFO:root:Epoch[19] Validation-mse=0.001327

3,利用log.txt文件来画图。

import re

import matplotlib.pyplot as plt

import numpy as np

def main():

file = open('log.txt','r')

list = []

# search the line including accuracy

for line in file:

m=re.search('Train-mse', line)

if m:

n=re.search('[0]\.[0-9]+', line) # 正则表达式

if n is not None:

list.append(n.group()) # 提取精度数字

file.close()

plt.plot(list, 'go')

plt.plot(list, 'r')

plt.xlabel('count')

plt.ylabel('accuracy')

plt.title('Accuracy')

plt.show()

if __name__ == '__main__':

main()

以上这篇python保存log日志,实现用log日志来画图就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 python保存log日志,实现用log日志画图 的全部内容, 来源链接: utcz.com/z/328221.html

回到顶部