pytorch 修改预训练model实例
我就废话不多说了,直接上代码吧!
class Net(nn.Module):
def __init__(self , model):
super(Net, self).__init__()
#取掉model的后两层
self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)
self.pool_layer = nn.MaxPool2d(32)
self.Linear_layer = nn.Linear(2048, 8)
def forward(self, x):
x = self.resnet_layer(x)
x = self.transion_layer(x)
x = self.pool_layer(x)
x = x.view(x.size(0), -1)
x = self.Linear_layer(x)
return x
resnet = models.resnet50(pretrained=True)
model = Net(resnet)
以上这篇pytorch 修改预训练model实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
以上是 pytorch 修改预训练model实例 的全部内容, 来源链接: utcz.com/z/328186.html