MATLAB Delaunay算法提取离散点边界的方法
最近在项目进行中遇到要提取离散点边界的问题,像我这样的对于matlab不是特别熟练的朋友一开始肯定摸不着头脑,到底选用哪种算法可以有效地提取到所有已知点的轮廓线呢。本人经过大量的文献搜索及代码实验找到了几个效果比较好的轮廓提取代码,在这里做个总结,并且希望能够对遇到同样问题的朋友有所启发。
关于离散点边界提取的三种方法:
1.Convhull 离散点集获得边界
2.Alpha Shape算法检测边缘点
3.Delaunay 三角剖分算法
前两种方法在之前的博客中已经做了总结这里就不展开了,现在主要介绍第三种算法。
该算法的总体思路如下:
1、利用 delaunay 函数,对所有数据点进行 Delaunay 三角剖分处理,delaunay 函数的返回值是一个 N * 3 的矩阵,其中 N 为剖分出的三角形个数,3 为每个三角形的三个端点的序号。
2、根据 triangles 矩阵,提取出所有 delaunay 三角剖分时所连接的边,依次扫描 triangles 矩阵的每一行,将 delaunay 三角剖分时所连接的边添加到一个新的矩阵中,最后构成一个 M * 2 的矩阵,其中 M 是一共所连接的边的条数。
3、显然,最小凸多边形上的边应该仅在以上矩阵中出现一次,因此,将以上矩阵中那些出现次数超过一次的边全部去掉,最后保留的便是最小凸多边形的边。
4、根据最小凸多边形的边,很容易得到构成最小凸多边形的结点的顺序,从而解决问题。
输入参数 points 是一个 2 * P 矩阵, P 为数据点的个数,第一行是这些数据点对应的 x 坐标,第二行是对应的 y 坐标;输出参数 polygon 是一个 2 * Q 矩阵, Q 为凸多边形的顶点个数(首尾相连),第一行是这些顶点对应的 x 坐标,第二行是对应的 y 坐标。代码实现如下:
function polygon = minimal_convex_polygon(points)
% 进行 delaunay 三角剖分,将所有连接了的边保存在矩阵 lines 中
triangles = sort(delaunay(points(1, :), points(2, :)), 2);
lines = zeros(size(triangles, 1) * 3, 2);
for i = 1:size(triangles, 1)
lines(3 * i - 2,:) = [triangles(i, 1), triangles(i, 2)];
lines(3 * i - 1,:) = [triangles(i, 1), triangles(i, 3)];
lines(3 * i,:) = [triangles(i, 2), triangles(i, 3)];
end
% 去掉 lines 中出现次数超过一次的边
[~, IA] = unique(lines, 'rows');
lines = setdiff(lines(IA, :), lines(setdiff(1:size(lines, 1), IA), :), 'rows');
% 跟踪 lines 中的数据点,将凸多边形的顶点编号保存在 seqs 中
seqs = zeros(size(lines, 1) + 1,1);
seqs(1:2) = lines(1, :);
lines(1, :) = [];
for i = 3:size(seqs)
pos = find(lines == seqs(i - 1));
row = rem(pos - 1, size(lines, 1)) + 1;
col = ceil(pos / size(lines, 1));
seqs(i) = lines(row, 3 - col);
lines(row, :) = [];
end
% 根据 seqs , 得到凸多边形顶点坐标
polygon = points(:, seqs);
end
定义了实现函数,下面进行调用:
plot(Pp(1,:),Pp(2,:), '*r', 'LineWidth', 4); % Pp第一行为x坐标,第二行为y坐标
polygon = minimal_convex_polygon(Pp);
hold on;
plot(polygon(1, :), polygon(2, :), 'LineWidth', 2);
效果图片我还不会添加进来,有兴趣的朋友可以试一试。
以上是 MATLAB Delaunay算法提取离散点边界的方法 的全部内容, 来源链接: utcz.com/z/324016.html