python利用dlib获取人脸的68个landmark

(1) 单人脸情况

import cv2

import dlib

path = "1.jpg"

img = cv2.imread(path)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸检测画框

detector = dlib.get_frontal_face_detector()

# 获取人脸关键点检测器

predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

#获取人脸框位置信息

dets = detector(gray, 1)#1表示采样(upsample)次数 0识别的人脸少点,1识别的多点,2识别的更多,小脸也可以识别

for face in dets:

shape = predictor(img, face) # 寻找人脸的68个标定点

# 遍历所有点,打印出其坐标,并圈出来

for pt in shape.parts():

pt_pos = (pt.x, pt.y)

cv2.circle(img, pt_pos, 2, (0, 0, 255), 1)#img, center, radius, color, thickness

cv2.imshow("image", img)

cv2.waitKey(0)

cv2.destroyAllWindows()

(2) 多人脸情况

import cv2

import dlib

path1 = "zxc.jpg"

img = cv2.imread(path1)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸检测画框

detector = dlib.get_frontal_face_detector()

# 获取人脸关键点检测器

predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

#获取人脸框位置信息

dets = detector(gray, 1)#1表示采样(upsample)次数 0识别的人脸少点,1识别的多点,2识别的更多,小脸也可以识别

for i in range(len(dets)):

shape = predictor(img, dets[i]) # 寻找人脸的68个标定点

# 遍历所有点,打印出其坐标,并圈出来

for pt in shape.parts():

pt_pos = (pt.x, pt.y)

cv2.circle(img, pt_pos, 2, (0, 0, 255), 1)#img, center, radius, color, thickness

cv2.imshow("image", img)

cv2.waitKey(0)#等待键盘输入

cv2.destroyAllWindows()

(3) 获取电脑摄像头实时识别标定

import cv2

import dlib

import numpy as np

cap = cv2.VideoCapture(0)#打开笔记本的内置摄像头,若参数是视频文件路径则打开视频

cap.isOpened()

def key_points(img):

points_keys = []

PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"

detector = dlib.get_frontal_face_detector()

predictor = dlib.shape_predictor(PREDICTOR_PATH)

rects = detector(img,1)

for i in range(len(rects)):

landmarks = np.matrix([[p.x,p.y] for p in predictor(img,rects[i]).parts()])

for point in landmarks:

pos = (point[0,0],point[0,1])

points_keys.append(pos)

cv2.circle(img,pos,2,(255,0,0),-1)

return img

while(True):

ret, frame = cap.read()#按帧读取视频,ret,frame是cap.read()方法的两个返回值。其中ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False。frame就是每一帧的图像,是个三维矩阵。

# gray = cv2.cvtColor(frame)

face_key = key_points(frame)

cv2.imshow('frame',face_key)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()#释放摄像头

cv2.destroyAllWindows()#关闭所有图像窗口

以上是 python利用dlib获取人脸的68个landmark 的全部内容, 来源链接: utcz.com/z/323488.html

回到顶部