对pandas的算术运算和数据对齐实例详解

pandas可以对不同索引的对象进行算术运算,如果存在不同的索引对,结果的索引就是该索引对的并集。

一、算术运算

a、series的加法运算

s1 = Series([1,2,3],index=["a","b","c"])

s2 = Series([4,5,6],index=["a","c","e"])

print(s1+s2)

'''

a 5.0

b NaN

c 8.0

e NaN

'''

sereis相加会自动进行数据对齐操作,在不重叠的索引处会使用NA(NaN)值进行填充,series进行算术运算的时候,不需要保证series的大小一致。

b、DataFrame的加法运算

d1 = np.arange(1,10).reshape(3,3)

dataFrame1 = DataFrame(d1,index=["a","b","c"],columns=["one","two","three"])

d2 = np.arange(1,10).reshape(3,3)

dataFrame2 = DataFrame(d2,index=["a","b","e"],columns=["one","two","four"])

print(dataFrame1+dataFrame2)

'''

four one three two

a NaN 2.0 NaN 4.0

b NaN 8.0 NaN 10.0

c NaN NaN NaN NaN

e NaN NaN NaN NaN

'''

dataFrame相加时,对齐操作需要行和列的索引都重叠的时候才回相加,否则会使用NA值进行填充。

二、指定填充值

s1 = Series([1,2,3],index=["a","b","c"])

s2 = Series([4,5,6],index=["a","c","e"])

print( s1.add(s2,fill_value=0))

'''

a 5.0

b 2.0

c 8.0

e 6.0

'''

需要注意的时候,使用add方法对两个series进行相加的时候,设置fill_value的值是对于不存在索引的series用指定值进行填充后再进行相加。除了加法add,还有sub减法,div除法,mul乘法,使用方式与add相同。DataFrame与series一样。

s1 = Series([1,2,3],index=["a","b","c"])

s2 = Series([4,5,6],index=["a","c","e"])

print(s2.reindex(["a","b","c","d"],fill_value=0))

'''

a 4

b 0

c 5

d 0

'''

s3 = s1 + s2

print(s3.reindex(["a","b","c","e"],fill_value=0))

'''

a 5.0

b NaN

c 8.0

e NaN

'''

使用reindex进行填充的时候,需要注意的是,不能对已经是值为NaN的进行重新赋值,只能对使用reindex之前不存在的所以使用指定的填充值,DataFrame也是一样的。

三、DataFrame与Series的混合运算

a、DataFrame的行进行广播

a = np.arange(9).reshape(3,3)

d = DataFrame(a,index=["a","b","c"],columns=["one","two","three"])

#取d的第一行为Series

s = d.ix[0]

print(d+s)

'''

one two three

a 0 2 4

b 3 5 7

c 6 8 10

'''

b、DataFrame的列进行广播

a = np.arange(9).reshape(3,3)

d = DataFrame(a,index=["a","b","c"],columns=["one","two","three"])

#取d的第一列为Series

s = d["one"]

print(d.add(s,axis=0))

'''

one two three

a 0 1 2

b 6 7 8

c 12 13 14

'''

对列进行广播的时候,必须要使用add方法,而且还要将axis设置为0,不然就会得到下面的结果

print(d.add(s))

'''

a b c one three two

a NaN NaN NaN NaN NaN NaN

b NaN NaN NaN NaN NaN NaN

c NaN NaN NaN NaN NaN NaN

'''

以上这篇对pandas的算术运算和数据对齐实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 对pandas的算术运算和数据对齐实例详解 的全部内容, 来源链接: utcz.com/z/318808.html

回到顶部