在pandas数据帧中存在多个if else条件,并派生多个列
我有一个像下面的数据框。
import pandas as pdimport numpy as np
raw_data = {'student':['A','B','C','D','E'],
'score': [100, 96, 80, 105,156],
'height': [7, 4,9,5,3],
'trigger1' : [84,95,15,78,16],
'trigger2' : [99,110,30,93,31],
'trigger3' : [114,125,45,108,46]}
df2 = pd.DataFrame(raw_data, columns = ['student','score', 'height','trigger1','trigger2','trigger3'])
print(df2)
我需要基于多个条件派生Flag列。
我需要比较触发器1 -3列的得分和身高列。
标志栏:
如果得分大于等于触发器1并且高度小于8,则红色-
如果得分大于等于触发器2并且高度小于8,则黄色-
如果得分大于等于触发器3并且高度小于8,则橙色-
如果高度大于8,则留空
如果在pandas数据框中有其他条件并导出列,该如何写?
预期产量
student score height trigger1 trigger2 trigger3 Flag0 A 100 7 84 99 114 Yellow
1 B 96 4 95 110 125 Red
2 C 80 9 15 30 45 NaN
3 D 105 5 78 93 108 Yellow
4 E 156 3 16 31 46 Orange
对于我原始问题中的其他列Text1,我已经厌倦了这个问题,但是使用astype(str)进行串联时,整数列未转换字符串吗?
def text_df(df): if (df['trigger1'] <= df['score'] < df['trigger2']) and (df['height'] < 8):
return df['student'] + " score " + df['score'].astype(str) + " greater than " + df['trigger1'].astype(str) + " and less than height 5"
elif (df['trigger2'] <= df['score'] < df['trigger3']) and (df['height'] < 8):
return df['student'] + " score " + df['score'].astype(str) + " greater than " + df['trigger2'].astype(str) + " and less than height 5"
elif (df['trigger3'] <= df['score']) and (df['height'] < 8):
return df['student'] + " score " + df['score'].astype(str) + " greater than " + df['trigger3'].astype(str) + " and less than height 5"
elif (df['height'] > 8):
return np.nan
回答:
您需要使用上下限进行链式比较
def flag_df(df): if (df['trigger1'] <= df['score'] < df['trigger2']) and (df['height'] < 8):
return 'Red'
elif (df['trigger2'] <= df['score'] < df['trigger3']) and (df['height'] < 8):
return 'Yellow'
elif (df['trigger3'] <= df['score']) and (df['height'] < 8):
return 'Orange'
elif (df['height'] > 8):
return np.nan
df2['Flag'] = df2.apply(flag_df, axis = 1)
student score height trigger1 trigger2 trigger3 Flag
0 A 100 7 84 99 114 Yellow
1 B 96 4 95 110 125 Red
2 C 80 9 15 30 45 NaN
3 D 105 5 78 93 108 Yellow
4 E 156 3 16 31 46 Orange
注意:您可以使用非常嵌套的np.where来执行此操作,但是我更喜欢将函数应用于多个if-else
以上是 在pandas数据帧中存在多个if else条件,并派生多个列 的全部内容, 来源链接: utcz.com/qa/418339.html