在keras自定义层中进行广播的逐元素乘法

我正在创建一个自定义图层,其权重需要在激活之前乘以逐个元素。当输出和输入的形状相同时,我可以使它工作。当我将一阶数组作为输入,将二阶数组作为输出时,会发生问题。tensorflow.multiply支持广播,但是当我尝试在Layer.call(x,self.kernel)中使用它来将x与self.kernel变量相乘时,它抱怨它们是不同的形状,说:

ValueError: Dimensions must be equal, but are 4 and 3 for 'my_layer_1/Mul' (op: 'Mul') with input shapes: [?,4], [4,3].

这是我的代码:

from keras import backend as K

from keras.engine.topology import Layer

import tensorflow as tf

from keras.models import Sequential

import numpy as np

class MyLayer(Layer):

def __init__(self, output_dims, **kwargs):

self.output_dims = output_dims

super(MyLayer, self).__init__(**kwargs)

def build(self, input_shape):

# Create a trainable weight variable for this layer.

self.kernel = self.add_weight(name='kernel',

shape=self.output_dims,

initializer='ones',

trainable=True)

super(MyLayer, self).build(input_shape) # Be sure to call this somewhere!

def call(self, x):

#multiply wont work here?

return K.tf.multiply(x, self.kernel)

def compute_output_shape(self, input_shape):

return (self.output_dims)

mInput = np.array([[1,2,3,4]])

inShape = (4,)

net = Sequential()

outShape = (4,3)

l1 = MyLayer(outShape, input_shape= inShape)

net.add(l1)

net.compile(loss='mean_absolute_error', optimizer='adam', metrics=['accuracy'])

p = net.predict(x=mInput, batch_size=1)

print(p)

编辑:给定输入形状(4,)和输出形状(4,3),权重矩阵应与输出形状相同,并用1进行初始化。因此,在上面的代码中,输入为[1,2,3,4],权重矩阵应为[[1,1,1,1],[1,1,1,1],[1,1,1

,1]],输出应类似于[[1,2,3,4],[1,2,3,4],[1,2,3,4]]

回答:

乘法之前,您需要重复元素以增加形状。您可以使用K.repeat_elements它。(import keras.backend as K

class MyLayer(Layer):

#there are some difficulties for different types of shapes

#let's use a 'repeat_count' instead, increasing only one dimension

def __init__(self, repeat_count,**kwargs):

self.repeat_count = repeat_count

super(MyLayer, self).__init__(**kwargs)

def build(self, input_shape):

#first, let's get the output_shape

output_shape = self.compute_output_shape(input_shape)

weight_shape = (1,) + output_shape[1:] #replace the batch size by 1

self.kernel = self.add_weight(name='kernel',

shape=weight_shape,

initializer='ones',

trainable=True)

super(MyLayer, self).build(input_shape) # Be sure to call this somewhere!

#here, we need to repeat the elements before multiplying

def call(self, x):

if self.repeat_count > 1:

#we add the extra dimension:

x = K.expand_dims(x, axis=1)

#we replicate the elements

x = K.repeat_elements(x, rep=self.repeat_count, axis=1)

#multiply

return x * self.kernel

#make sure we comput the ouptut shape according to what we did in "call"

def compute_output_shape(self, input_shape):

if self.repeat_count > 1:

return (input_shape[0],self.repeat_count) + input_shape[1:]

else:

return input_shape

以上是 在keras自定义层中进行广播的逐元素乘法 的全部内容, 来源链接: utcz.com/qa/416407.html

回到顶部