C语言中有效的位反转算法(从MSB-> LSB到LSB-> MSB)

实现以下目的的最有效算法是:

0010 0000 => 0000 0100

转换是从MSB-> LSB到LSB-> MSB。所有位都必须反转;也就是说,这 不是 字节序交换。

回答:

:以下所有算法均使用C语言,但应可移植到您选择的语言中(当它们不那么快时,请不要看着我:)

回答:

unsigned int

reverse(register unsigned int x)

{

x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));

x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));

x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));

x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));

return((x >> 16) | (x << 16));

}

从著名的Bit Twiddling

Hacks页面:

static const unsigned char BitReverseTable256[] = 

{

0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,

0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,

0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,

0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,

0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,

0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,

0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,

0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,

0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,

0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,

0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,

0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,

0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,

0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,

0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,

0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF

};

unsigned int v; // reverse 32-bit value, 8 bits at time

unsigned int c; // c will get v reversed

// Option 1:

c = (BitReverseTable256[v & 0xff] << 24) |

(BitReverseTable256[(v >> 8) & 0xff] << 16) |

(BitReverseTable256[(v >> 16) & 0xff] << 8) |

(BitReverseTable256[(v >> 24) & 0xff]);

// Option 2:

unsigned char * p = (unsigned char *) &v;

unsigned char * q = (unsigned char *) &c;

q[3] = BitReverseTable256[p[0]];

q[2] = BitReverseTable256[p[1]];

q[1] = BitReverseTable256[p[2]];

q[0] = BitReverseTable256[p[3]];

您可以将此想法扩展到64位int,或以内存为代价进行交换(假设您的L1数据高速缓存足够大),并使用64K条目查找表一次反转16位。


回答:

unsigned int v;     // input bits to be reversed

unsigned int r = v & 1; // r will be reversed bits of v; first get LSB of v

int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end

for (v >>= 1; v; v >>= 1)

{

r <<= 1;

r |= v & 1;

s--;

}

r <<= s; // shift when v's highest bits are zero

unsigned char b = x;

b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;

unsigned char b; // reverse this (8-bit) byte

b = (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;

如果要在32位上执行此操作int,只需反转每个字节中的位,然后反转字节的顺序即可。那是:

unsigned int toReverse;

unsigned int reversed;

unsigned char inByte0 = (toReverse & 0xFF);

unsigned char inByte1 = (toReverse & 0xFF00) >> 8;

unsigned char inByte2 = (toReverse & 0xFF0000) >> 16;

unsigned char inByte3 = (toReverse & 0xFF000000) >> 24;

reversed = (reverseBits(inByte0) << 24) | (reverseBits(inByte1) << 16) | (reverseBits(inByte2) << 8) | (reverseBits(inByte3);


回答:

我对两个最有前途的解决方案进行了基准测试,即查找表和按位与(第一个)。测试机器是一台笔记本电脑,带有4GB DDR2-800和一个Core 2 Duo

T7500 @ 2.4GHz,4MB L2缓存;YMMV。我在64位Linux上使用了 gcc

4.3.2。OpenMP(和GCC绑定)用于高分辨率计时器。

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

unsigned int

reverse(register unsigned int x)

{

x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));

x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));

x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));

x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));

return((x >> 16) | (x << 16));

}

int main()

{

unsigned int *ints = malloc(100000000*sizeof(unsigned int));

unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));

for(unsigned int i = 0; i < 100000000; i++)

ints[i] = rand();

unsigned int *inptr = ints;

unsigned int *outptr = ints2;

unsigned int *endptr = ints + 100000000;

// Starting the time measurement

double start = omp_get_wtime();

// Computations to be measured

while(inptr != endptr)

{

(*outptr) = reverse(*inptr);

inptr++;

outptr++;

}

// Measuring the elapsed time

double end = omp_get_wtime();

// Time calculation (in seconds)

printf("Time: %f seconds\n", end-start);

free(ints);

free(ints2);

return 0;

}

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

static const unsigned char BitReverseTable256[] =

{

0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,

0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,

0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,

0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,

0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,

0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,

0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,

0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,

0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,

0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,

0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,

0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,

0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,

0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,

0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,

0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF

};

int main()

{

unsigned int *ints = malloc(100000000*sizeof(unsigned int));

unsigned int *ints2 = malloc(100000000*sizeof(unsigned int));

for(unsigned int i = 0; i < 100000000; i++)

ints[i] = rand();

unsigned int *inptr = ints;

unsigned int *outptr = ints2;

unsigned int *endptr = ints + 100000000;

// Starting the time measurement

double start = omp_get_wtime();

// Computations to be measured

while(inptr != endptr)

{

unsigned int in = *inptr;

// Option 1:

//*outptr = (BitReverseTable256[in & 0xff] << 24) |

// (BitReverseTable256[(in >> 8) & 0xff] << 16) |

// (BitReverseTable256[(in >> 16) & 0xff] << 8) |

// (BitReverseTable256[(in >> 24) & 0xff]);

// Option 2:

unsigned char * p = (unsigned char *) &(*inptr);

unsigned char * q = (unsigned char *) &(*outptr);

q[3] = BitReverseTable256[p[0]];

q[2] = BitReverseTable256[p[1]];

q[1] = BitReverseTable256[p[2]];

q[0] = BitReverseTable256[p[3]];

inptr++;

outptr++;

}

// Measuring the elapsed time

double end = omp_get_wtime();

// Time calculation (in seconds)

printf("Time: %f seconds\n", end-start);

free(ints);

free(ints2);

return 0;

}

我在几种不同的优化条件下尝试了这两种方法,在每个级别上进行了3次试验,每个试验都随机抽取了1亿个样本unsigned

ints。对于查找表选项,我尝试了按位hacks页面上给出的两种方案(选项1和2)。结果如下所示。

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse reverse.c

mrj10@mjlap:~/code$ ./reverse

Time: 2.000593 seconds

mrj10@mjlap:~/code$ ./reverse

Time: 1.938893 seconds

mrj10@mjlap:~/code$ ./reverse

Time: 1.936365 seconds

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse reverse.c

mrj10@mjlap:~/code$ ./reverse

Time: 0.942709 seconds

mrj10@mjlap:~/code$ ./reverse

Time: 0.991104 seconds

mrj10@mjlap:~/code$ ./reverse

Time: 0.947203 seconds

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse reverse.c

mrj10@mjlap:~/code$ ./reverse

Time: 0.922639 seconds

mrj10@mjlap:~/code$ ./reverse

Time: 0.892372 seconds

mrj10@mjlap:~/code$ ./reverse

Time: 0.891688 seconds

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.201127 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.196129 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.235972 seconds

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 0.633042 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 0.655880 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 0.633390 seconds

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 0.652322 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 0.631739 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 0.652431 seconds

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -o reverse_lookup reverse_lookup.c

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.671537 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.688173 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.664662 seconds

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O2 -o reverse_lookup reverse_lookup.c

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.049851 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.048403 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.085086 seconds

mrj10@mjlap:~/code$ gcc -fopenmp -std=c99 -O3 -o reverse_lookup reverse_lookup.c

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.082223 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.053431 seconds

mrj10@mjlap:~/code$ ./reverse_lookup

Time: 1.081224 seconds

回答:

(字节寻址很慢)。如果您需要从系统中挤出内存的最后一个字节(并且您可能会关心位反转的性能),那么按位“与”方法的优化版本也不会太差劲。

回答:

是的,我知道基准代码是一个完整的技巧。我们非常欢迎有关如何改进它的建议。我了解的事情:

  • 我无权使用ICC。这可能会更快(如果可以测试,请在评论中回复)。
  • 在一些具有较大L1D的现代微体系结构上,使用64K查找表可能效果很好。
  • -mtune = native不适用于-O2 / -O3(ld炸毁了一些疯狂的符号重新定义错误),因此我不相信为我的微体系结构调整生成的代码。
  • 使用SSE可能有一种更快的方法。我不知道该怎么做,但是有了快速复制,按位与和打包以及令人费解的指令,这里肯定会有一些东西。
  • 我知道只有足够多的x86组件很危险;这是在-O3上为选项1生成的代码GCC,因此比我本人更了解的人可以查看一下:

.L3:

movl (%r12,%rsi), %ecx

movzbl %cl, %eax

movzbl BitReverseTable256(%rax), %edx

movl %ecx, %eax

shrl $24, %eax

mov %eax, %eax

movzbl BitReverseTable256(%rax), %eax

sall $24, %edx

orl %eax, %edx

movzbl %ch, %eax

shrl $16, %ecx

movzbl BitReverseTable256(%rax), %eax

movzbl %cl, %ecx

sall $16, %eax

orl %eax, %edx

movzbl BitReverseTable256(%rcx), %eax

sall $8, %eax

orl %eax, %edx

movl %edx, (%r13,%rsi)

addq $4, %rsi

cmpq $400000000, %rsi

jne .L3

编辑:我也尝试uint64_t在计算机上使用类型,以查看是否有任何性能提升。性能比32位快大约10%,无论您是一次使用64位类型同时反转两个32位int类型上的位,还是实际上反转了64

位类型的一半,性能几乎相同位值。汇编代码如下所示(对于前一种情况,一次反转两种32位int类型的位):

.L3:

movq (%r12,%rsi), %rdx

movq %rdx, %rax

shrq $24, %rax

andl $255, %eax

movzbl BitReverseTable256(%rax), %ecx

movzbq %dl,%rax

movzbl BitReverseTable256(%rax), %eax

salq $24, %rax

orq %rax, %rcx

movq %rdx, %rax

shrq $56, %rax

movzbl BitReverseTable256(%rax), %eax

salq $32, %rax

orq %rax, %rcx

movzbl %dh, %eax

shrq $16, %rdx

movzbl BitReverseTable256(%rax), %eax

salq $16, %rax

orq %rax, %rcx

movzbq %dl,%rax

shrq $16, %rdx

movzbl BitReverseTable256(%rax), %eax

salq $8, %rax

orq %rax, %rcx

movzbq %dl,%rax

shrq $8, %rdx

movzbl BitReverseTable256(%rax), %eax

salq $56, %rax

orq %rax, %rcx

movzbq %dl,%rax

shrq $8, %rdx

movzbl BitReverseTable256(%rax), %eax

andl $255, %edx

salq $48, %rax

orq %rax, %rcx

movzbl BitReverseTable256(%rdx), %eax

salq $40, %rax

orq %rax, %rcx

movq %rcx, (%r13,%rsi)

addq $8, %rsi

cmpq $400000000, %rsi

jne .L3

以上是 C语言中有效的位反转算法(从MSB-&gt; LSB到LSB-&gt; MSB) 的全部内容, 来源链接: utcz.com/qa/410569.html

回到顶部