整数时间复杂度的位计数算法(Brian Kernighan)
有人可以解释为什么Brian Kernighan的算法采用O(log N)来计数整数中的设置位(1s)。下面是该算法的简单实现(在JAVA中)
int count_set_bits(int n){ int count = 0;
while(n != 0){
n &= (n-1);
count++;
}
return count;
}
我了解如何通过将最右边的设置位一一清除直到变为0来了解它的工作原理,但是我只是不知道我们如何获得O(log N)。
回答:
该算法经过与设置位一样多的迭代。因此,如果我们有一个只设置了高位的32位字,那么它将只循环一次。在最坏的情况下,它将每位通过一次。整数n
有log(n)
位,因此最坏的情况是O(log(n))
。这是在重要位(双关语意味)处注释的代码:
int count_set_bits(int n){ int count = 0; // count accumulates the total bits set
while(n != 0){
n &= (n-1); // clear the least significant bit set
count++;
}
}
以上是 整数时间复杂度的位计数算法(Brian Kernighan) 的全部内容, 来源链接: utcz.com/qa/410066.html