查找可被给定整数k整除的对所需的最佳算法
给定n个整数和一个整数k,请告诉我们存在多少对给定的n个整数,以便该对中两个元素的总和可被k整除?
我不知道n和k的界限。因此,为简单起见,假设n和k不是很大。
不用说,给出尽可能最佳的解决方案。(我知道天真的方法:-)!)
回答:
两个数的和是否可被除以k
仅取决于它们的余数取模k
。
因此,如果k
相当小,则可以只计算每个可能余数的数量,然后从中计算出对的数量。假定k > 0
所有整数均为非负数
unsigned long long combinations(unsigned k, unsigned long long *arr, unsigned n) { unsigned long long counts[k] = {0};
unsigned i;
for(i = 0; i < n; ++i) {
++counts[arr[i]%k];
}
// number of pairs where both are divisible by k
unsigned long long combs = counts[0]*(counts[0]-1)/2;
for(i = 1; i < (k+1)/2; ++i) {
combs += counts[i]*counts[k-i];
}
if (k == 2*i) {
combs += counts[i]*(counts[i] - 1)/2;
}
return combs;
}
分O(n+k)
步完成工作。如果n
很小而k
很大,那么朴素的算法会更好。
以上是 查找可被给定整数k整除的对所需的最佳算法 的全部内容, 来源链接: utcz.com/qa/405096.html