如何从pandas数据框在MySQL数据库中创建新表

最近,我从使用SQLite满足大部分数据存储和管理需求过渡到了MySQL。我想我终于安装了正确的库以与Python

3.6一起使用,但是现在我无法从MySQL数据库中的数据帧创建新表。

这是我导入的库:

import pandas as pd

import mysql.connector

from sqlalchemy import create_engine

在我的代码中,我首先从CSV文件创建一个数据框(此处没有问题)。

def csv_to_df(infile):

return pd.read_csv(infile)

然后,使用此def函数建立与MySQL数据库的连接:

def mysql_connection():

user = 'root'

password = 'abc'

host = '127.0.0.1'

port = '3306'

database = 'a001_db'

engine = create_engine("mysql://{0}:{1}@{2}:{3}/{4}?charset=utf8".format(user, password, host, port, database))

return engine

最后,我使用pandas函数“ to_sql”在MySQL数据库中创建数据库表:

def df_to_mysql(df, db_tbl_name, conn=mysql_connection(), index=False):

df.to_sql(con = conn, name = db_tbl_name, if_exists='replace', index = False)

我使用此行运行代码:

df_to_mysql(csv_to_df(r'path/to/file.csv'), 'new_database_table')

产生以下错误:

InvalidRequestError: Could not reflect: requested table(s) not available in Engine(mysql://root:***@127.0.0.1:3306/a001_db?charset=utf8): (new_database_table)

我认为这是在告诉我必须先在数据库中创建一个表,然后才能将数据帧中的数据传递到该表,但是我对此并不百分百肯定。无论如何,我正在寻找一种无需先手动创建表即可在MySQL数据库中创建表的方法(我有许多CSV,每个都有50多个字段,必须将这些CSV作为新表上传到MySQL数据库中)。

有什么建议?

回答:

我采用了aws_apprentice建议的方法,该方法是先创建表,然后将数据写入表。

下面的代码首先从df自动生成mysql表(自动定义表名称和数据类型),然后将df数据写入该表。

我必须克服几个难题,例如:未命名的csv列,为mysql表中的每个字段确定正确的数据类型。

I’m sure there are multiple other (better?) ways to do this, but this seems to

work.

import pandas as pd

from sqlalchemy import create_engine

infile = r'path/to/file.csv'

db = 'a001_db'

db_tbl_name = 'a001_rd004_db004'

'''

Load a csv file into a dataframe; if csv does not have headers, use the headers arg to create a list of headers; rename unnamed columns to conform to mysql column requirements

'''

def csv_to_df(infile, headers = []):

if len(headers) == 0:

df = pd.read_csv(infile)

else:

df = pd.read_csv(infile, header = None)

df.columns = headers

for r in range(10):

try:

df.rename( columns={'Unnamed: {0}'.format(r):'Unnamed{0}'.format(r)}, inplace=True )

except:

pass

return df

'''

Create a mapping of df dtypes to mysql data types (not perfect, but close enough)

'''

def dtype_mapping():

return {'object' : 'TEXT',

'int64' : 'INT',

'float64' : 'FLOAT',

'datetime64' : 'DATETIME',

'bool' : 'TINYINT',

'category' : 'TEXT',

'timedelta[ns]' : 'TEXT'}

'''

Create a sqlalchemy engine

'''

def mysql_engine(user = 'root', password = 'abc', host = '127.0.0.1', port = '3306', database = 'a001_db'):

engine = create_engine("mysql://{0}:{1}@{2}:{3}/{4}?charset=utf8".format(user, password, host, port, database))

return engine

'''

Create a mysql connection from sqlalchemy engine

'''

def mysql_conn(engine):

conn = engine.raw_connection()

return conn

'''

Create sql input for table names and types

'''

def gen_tbl_cols_sql(df):

dmap = dtype_mapping()

sql = "pi_db_uid INT AUTO_INCREMENT PRIMARY KEY"

df1 = df.rename(columns = {"" : "nocolname"})

hdrs = df1.dtypes.index

hdrs_list = [(hdr, str(df1[hdr].dtype)) for hdr in hdrs]

for i, hl in enumerate(hdrs_list):

sql += " ,{0} {1}".format(hl[0], dmap[hl[1]])

return sql

'''

Create a mysql table from a df

'''

def create_mysql_tbl_schema(df, conn, db, tbl_name):

tbl_cols_sql = gen_tbl_cols_sql(df)

sql = "USE {0}; CREATE TABLE {1} ({2})".format(db, tbl_name, tbl_cols_sql)

cur = conn.cursor()

cur.execute(sql)

cur.close()

conn.commit()

'''

Write df data to newly create mysql table

'''

def df_to_mysql(df, engine, tbl_name):

df.to_sql(tbl_name, engine, if_exists='replace')

df = csv_to_df(infile)

create_mysql_tbl_schema(df, mysql_conn(mysql_engine()), db, db_tbl_name)

df_to_mysql(df, mysql_engine(), db_tbl_name)

以上是 如何从pandas数据框在MySQL数据库中创建新表 的全部内容, 来源链接: utcz.com/qa/402598.html

回到顶部