Dimension must equal, MatMul with input shapes: [?,53],[150,200]
我想将两个不同维度的向量送进Bi-LSTM中,然后concat起来,但是报错。
with tf.variable_scope("bi-lstm"): cell_bw = LSTMCell(self.hidden_dim)
cell_fw = LSTMCell(self.hidden_dim)
(output_fw_seq_e, output_bw_seq_e), _ = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=self.word_embeddings,
sequence_length=self.sequence_lengths,
dtype=tf.float32)
output_e = tf.concat([output_fw_seq_e, output_bw_seq_e], axis=-1)
(output_fw_seq_d, output_bw_seq_d), _ = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=self.features_dim,
sequence_length=self.sequence_lengths,
dtype=tf.float32)
output_d = tf.concat([output_fw_seq_d, output_bw_seq_d], axis=-1)
output = tf.concat([output_e, output_d], axis=-1)
output = tf.nn.dropout(output, self.dropout_pl)
self.hidden_dim: 50维
self.word_embeddings: 100维
self.features: 3维
求助!
补充Weight和bias代码如下:
with tf.variable_scope("proj"): W = tf.get_variable(name="W",
shape=[2 * self.hidden_dim, self.num_tags],
initializer=tf.contrib.layers.xavier_initializer(),
dtype=tf.float32)
b = tf.get_variable(name="b",
shape=[self.num_tags],
initializer=tf.zeros_initializer(),
dtype=tf.float32)
s = tf.shape(output)
output = tf.reshape(output, [-1, 2 * self.hidden_dim])
pred = tf.matmul(output, W) + b
回答:
[?,53]
跟[150,200]
不能矩阵乘,第一个矩阵的第二维和第二个矩阵的第一维要相同。
问题应该是上一步的输出不对,或者模型不对。
试一下生成网络结构图,效果如下,http://ethereon.github.io/net...
以上是 Dimension must equal, MatMul with input shapes: [?,53],[150,200] 的全部内容, 来源链接: utcz.com/p/937776.html