基于matlab对比度和结构提取的多模态解剖图像融合实现

一、图像融合简介

应用多模态图像的配准与融合技术,可以把不同状态的医学图像有机地结合起来,为临床诊断和治疗提供更丰富的信息。介绍了多模态医学图像配准与融合的概念、方法及意义。最后简单介绍了小波变换分析方法。

二、部分源代码

clear; close all; clc; warning off

%% A Novel Multi-Modality Anatomical Image FusionMethod Based on Contrast and Structure Extraction

% F = fuseImage(I,scale)

%Inputs:

%I - a mulyi-modal anatomical image sequence

%scale - scale factor of dense SIFT, the default value is 16

%% load images from the folder that contain multi-modal image to be fused

%I=load_images('./Dataset\CT-MRI\Pair 1');

I=load_images('./Dataset\MR-T1-MR-T2\Pair 1');

%I=load_images('./Dataset\MR-Gad-MR-T1\Pair 1');

% Show source input images

figure;

no_of_images = size(I,4);

for i = 1:no_of_images

subplot(2,1,i); imshow(I(:,:,:,i));

end

suptitle('Source Images');

%%

F=fuseImage(I,16);

%% Output: F - the fused image

F=rgb2gray(F);

figure;

imshow(F);

function [ F ] = fuseImage(I,scale)

addpath('Pyramid_Decomposition');

addpath('Guided_Filter');

addpath('Dense_SIFT');

tic

%%

[H, W, C, N]=size(I);

imgs=im2double(I);

IA=zeros(H,W,C,N);

for i=1:N

IA(:,:,:,i)=enhnc(imgs(:,:,:,i));

end

%%

imgs_gray=zeros(H,W,N);

for i=1:N

imgs_gray(:,:,i)=rgb2gray(IA(:,:,:,i));

end

%

% %dense sift calculation

dsifts=zeros(H,W,32,N, 'single');

for i=1:N

img=imgs_gray(:,:,i);

ext_img=img_extend(img,scale/2-1);

[dsifts(:,:,:,i)] = DenseSIFT(ext_img, scale, 1);

end

%%

%local contrast

contrast_map=zeros(H,W,N);

for i=1:N

contrast_map(:,:,i)=sum(dsifts(:,:,:,i),3);

end

%winner-take-all weighted average strategy for local contrast

[x, labels]=max(contrast_map,[],3);

clear x;

for i=1:N

mono=zeros(H,W);

mono(labels==i)=1;

contrast_map(:,:,i)=mono;

end

%% Structure

h = [1 -1];

structure_map=zeros(H,W,N);

for i=1:N

structure_map(:,:,i) = abs(conv2(imgs_gray(:,:,i),h,'same')) + abs(conv2(imgs_gray(:,:,i),h','same')); %EQ 13

end

%winner-take-all weighted average strategy for structure

[a, label]=max(structure_map,[],3);

clear x;

for i=1:N

monoo=zeros(H,W);

monoo(label==i)=1;

structure_map(:,:,i)=monoo;

end

%%

weight_map=structure_map.*contrast_map;

%weight map refinement using Guided Filter

for i=1:N

weight_map(:,:,i) = fastGF(weight_map(:,:,i),12,0.25,2.5);

end

% normalizing weight maps

%

weight_map = weight_map + 10^-25; %avoids division by zero

weight_map = weight_map./repmat(sum(weight_map,3),[1 1 N]);

%% Pyramid Decomposition

% create empty pyramid

pyr = gaussian_pyramid(zeros(H,W,3));

nlev = length(pyr);

% multiresolution blending

for i = 1:N

% construct pyramid from each input image

% blend

for b = 1:nlev

w = repmat(pyrW{b},[1 1 3]);

pyr{b} = pyr{b} + w .*pyrI{b};

end

end

% reconstruct

F = reconstruct_laplacian_pyramid(pyr);

toc

end

三、运行结果

四、matlab版本

matlab版本

2014a

以上就是基于matlab对比度和结构提取的多模态解剖图像融合实现的详细内容,更多关于matlab  多模态解剖图像融合的资料请关注其它相关文章!

以上是 基于matlab对比度和结构提取的多模态解剖图像融合实现 的全部内容, 来源链接: utcz.com/p/247837.html

回到顶部