C语言数字图像处理之直方图均衡化

本文实例为大家分享了C语言直方图均衡化的具体代码,供大家参考,具体内容如下

原理

直方图均衡化(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等。这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小的话,会产生粗略分类的视觉效果。

直方图是表示数字图像中每一灰度出现频率的统计关系。直方图能给出图像灰度范围、每个灰度的频度和灰度的分布、整幅图像的平均明暗和对比度等概貌性描述。灰度直方图是灰度级的函数, 反映的是图像中具有该灰度级像素的个数, 其横坐标是灰度级r, 纵坐标是该灰度级出现的频率( 即像素的个数) pr( r) , 整个坐标系描述的是图像灰度级的分布情况, 由此可以看出图像的灰度分布特性, 即若大部分像素集中在低灰度区域, 图像呈现暗的特性; 若像素集中在高灰度区域, 图像呈现亮的特性。灰度数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑白

实现

流程:

1)统计每个灰度级像素点的个数

2)计算灰度分布密度

3)计算累计直方图分布

4)累计分布取整,保存计算出来的灰度映射关系

处理图片规格800*600 8位灰度单通道

原图

直方图均衡化

分析:本次实验中,我故意把原图调暗,进行直方图均衡化后可以明显感受到整幅图像亮度增大了,而且某些细节方面更加突出。

出现问题

最初进行直方图均衡化时,输出结果如下:

经分析,是没有对数组初始化置零导致的。Hist数组是进行一个统计像素点个数的数组,最初倘若不置零,结果必然毫无意义。

故而添加数组内存置零的操作:

经测试,问题解决。

附代码

#include <stdio.h>

#include <stdlib.h>

#include <memory.h>

#define height 600

#define width 800

typedef unsigned char BYTE; // 定义BYTE类型,占1个字节

int main(void)

{

FILE *fp = NULL;

//BYTE Pic[height][width];

BYTE *ptr;

BYTE **Pic = new BYTE *[height];

for (int i = 0; i != height; ++i)

{

Pic[i] = new BYTE[width];

}

fp = fopen("weiminglake_huidu.raw", "rb");

ptr = (BYTE*)malloc(width * height * sizeof(BYTE));//创建内存

for (int i = 0; i < height; i++)

{

for (int j = 0; j < width; j++)

{

fread(ptr, 1, 1, fp);

Pic[i][j] = *ptr; // 把图像输入到2维数组中,变成矩阵型式

ptr++;

}

}

fclose(fp);

int hist[256];

float fpHist[256];

float eqHistTemp[256];

int eqHist[256];

int size = height *width;

int i, j;

memset(&hist, 0x00, sizeof(int) * 256);

memset(&fpHist, 0x00, sizeof(float) * 256);

memset(&eqHistTemp, 0x00, sizeof(float) * 256);

for (i = 0; i < height; i++) //计算差分矩阵直方图 直方图 统计每个灰度级像素点的个数

{

for (j = 0; j < width; j++)

{

unsigned char GrayIndex = Pic[i][j];

hist[GrayIndex] ++;

}

}

for (i = 0; i< 256; i++) // 计算灰度分布密度

{

fpHist[i] = (float)hist[i] / (float)size;

}

for (i = 0; i< 256; i++) // 计算累计直方图分布

{

if (i == 0)

{

eqHistTemp[i] = fpHist[i];

}

else

{

eqHistTemp[i] = eqHistTemp[i - 1] + fpHist[i];

}

}

//累计分布取整,保存计算出来的灰度映射关系

for (i = 0; i< 256; i++)

{

eqHist[i] = (int)(255.0 * eqHistTemp[i] + 0.5);

}

for (i = 0; i < height; i++) //进行灰度映射均衡化

{

for (j = 0; j < width; j++)

{

unsigned char GrayIndex = Pic[i][j];

Pic[i][j] = eqHist[GrayIndex];

}

}

fp = fopen("output.raw", "wb");

for (i = 0; i < height; i++)

{

for (j = 0; j < width; j++)

{

fwrite(&Pic[i][j], 1, 1, fp);

}

}

fclose(fp);

return 0;

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

以上是 C语言数字图像处理之直方图均衡化 的全部内容, 来源链接: utcz.com/p/247477.html

回到顶部