基于OpenCV实现图像分割

本文实例为大家分享了基于OpenCV实现图像分割的具体代码,供大家参考,具体内容如下

1、图像阈值化

源代码:

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>

using namespace std;

using namespace cv;

int thresholds=50;

int model=2;

Mat image,srcimage;

void track(int ,void *)

{

Mat result;

threshold(srcimage,result,thresholds,255,CV_THRESH_BINARY);

//imshow("原图",result);

if(model==0)

{

threshold(srcimage,result,thresholds,255,CV_THRESH_BINARY);

imshow("分割",result);

}

if(model==1)

{

threshold(srcimage,result,thresholds,255,THRESH_BINARY_INV);

imshow("分割",result);

}

if(model==2)

{

threshold(srcimage,result,thresholds,255,THRESH_TRUNC);

imshow("分割",result);

}

if(model==3)

{

threshold(srcimage,result,thresholds,255,THRESH_TOZERO);

imshow("分割",result);

}

if(model==4)

{

threshold(srcimage,result,thresholds,255,THRESH_TOZERO_INV);

imshow("分割",result);

}

}

int main()

{

image=imread("2.2.tif");

if(!image.data)

{

return 0;

}

cvtColor(image,srcimage,CV_BGR2GRAY);

namedWindow("分割",WINDOW_AUTOSIZE);

cv::createTrackbar("阈a值:","分割",&thresholds,255,track);

cv::createTrackbar("模式:","分割",&model,4,track);

track(thresholds,0);

track(model,0);

waitKey(0);

return 0;

}

实现结果:

2、阈值处理

//阈值处理

#include "opencv2/core/core.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

using namespace cv;

using namespace std;

int main()

{

printf("键盘按键ESC--退出程序");

Mat g_srcImage = imread("1.tif",0);

if(!g_srcImage.data)

{

printf("读取图片失败");

}

imshow("原始图",g_srcImage);

//大津法阈值分割显示

/*大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景

和目标2部分。背景和目标之间的类间方差越大,说明构成图像

的2部分的差别越大,当部分目标错分为背景或部分背景错分为

目标都会导致2部分差别变小。*/

Mat OtsuImage;

threshold(g_srcImage,OtsuImage,0,255,THRESH_OTSU);//0不起作用,可为任意阈值

imshow("OtsuImage",OtsuImage);

//自适应分割并显示

Mat AdaptImage;

//THRESH_BINARY_INV:参数二值化取反

adaptiveThreshold(g_srcImage,AdaptImage,255,0,THRESH_BINARY_INV,7,8);

imshow("AdaptImage",AdaptImage);

while(1)

{

int key;

key = waitKey(20);

if((char)key == 27)

{ break; }

}

}

效果图:

3、拉普拉斯检测

//Laplacian检测

#include "opencv2/core/core.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

using namespace cv;

using namespace std;

/*,在只关心边缘的位置而不考虑其周围的象素灰度差值时比较合适。

Laplace 算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此

只适用于无噪声图象。存在噪声情况下,使用 Laplacian 算子检测边

缘之前需要先进行低通滤波。*/

int main()

{

Mat src,src_gray,dst,abs_dst;

src = imread("1.jpg");

imshow("原始图像",src);

//高斯滤波

GaussianBlur(src,src,Size(3,3),0,0,BORDER_DEFAULT);

//转化为灰度图,输入只能为单通道

cvtColor(src,src_gray,CV_BGR2GRAY);

Laplacian(src_gray,dst,CV_16S,3,1,0,BORDER_DEFAULT);

convertScaleAbs(dst,abs_dst);

imshow("效果图Laplace变换",abs_dst);

waitKey();

return 0;

}

效果图:

4、canny算法的边缘检测

源代码

#include "opencv2/core/core.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

using namespace cv;

using namespace std;

/*如果某一像素位置的幅值超过高阈值,该像素被保留为边缘像素。如果某

一像素位置的幅值小于低阈值,该像素被排除。如果某一像素位置的幅值在

两个阈值之间,该像素仅仅在连接到一个高于高阈值的像素时被保留。 */

int main()

{

Mat picture2=imread("1.jpg");

Mat new_picture2;

Mat picture2_1=picture2.clone();

Mat gray_picture2 , edge , new_edge;

imshow("【原始图】Canny边缘检测" , picture2);

Canny(picture2_1 , new_picture2 ,150 , 100 ,3 );

imshow("【效果图】Canny边缘检测", new_picture2 );

Mat dstImage,grayImage;

//dstImage与srcImage同大小类型

dstImage.create(picture2_1.size() , picture2_1.type());

cvtColor(picture2_1,gray_picture2,CV_BGR2GRAY);//转化为灰度图

blur(gray_picture2 , edge , Size(3,3));//用3x3的内核降噪

Canny(edge,edge,3,9,3);

dstImage = Scalar::all(0);//将dst内所有元素设置为0

//使用canny算子的边缘图edge作为掩码,将原图拷贝到dst中

picture2_1.copyTo(dstImage,edge);

imshow("效果图Canny边缘检测2",dstImage);

waitKey();

}

效果图:

5、图像的分水岭算法

源代码:

#include "opencv2/core/core.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>

using namespace cv;

using namespace std;

#define WINDOW_NAME1 "显示/操作窗口"

#define WINDOW_NAME2 "分水岭算法效果图"

Mat g_maskImage,g_srcImage;

Point prevPt(-1,-1);

static void ShowHelpText();

static void on_Mouse(int event,int x,int y,int flags,void*);

//输出一些帮助信息

static void ShowHelpText()

{

printf("当前使用的版本为:"CV_VERSION);

printf("\n");

printf("分水岭算法---点中图片进行鼠标或按键操作\n");

printf("请先用鼠标在图片窗口中标记出大致的区域,\n然后再按键【1】或者【space】启动算法");

printf("\n按键操作说明:\n"

"键盘按键【1】或者【space】--运行的分水岭分割算法\n"

"键盘按键【2】--回复原始图片\n"

"键盘按键【ESC】--退出程序\n");

}

static void on_Mouse(int event,int x,int y,int flags,void*)

{

if(x<0||x>=g_srcImage.cols||y<0||y>=g_srcImage.rows)

return;

if(event == CV_EVENT_LBUTTONUP||!(flags & CV_EVENT_FLAG_LBUTTON))

prevPt = Point(-1,-1);

else if(event == CV_EVENT_LBUTTONDOWN)

prevPt= Point(x,y);

else if(event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON))

{

Point pt(x,y);

if(prevPt.x<0)

prevPt = pt;

line(g_maskImage,prevPt,pt,Scalar::all(255),5,8,0);

line(g_srcImage,prevPt,pt,Scalar::all(255),5,8,0);

prevPt = pt;

imshow(WINDOW_NAME1,g_srcImage);

}

}

int main(int argc,char** argv)

{

system("color A5");

ShowHelpText();

g_srcImage = imread("1.jpg",1);

imshow(WINDOW_NAME1,g_srcImage);

Mat srcImage,grayImage;

g_srcImage.copyTo(srcImage);

cvtColor(g_srcImage,g_maskImage,CV_BGR2GRAY);

cvtColor(g_maskImage,grayImage,CV_GRAY2BGR);//灰度图转BGR3通道,但每通道的值都是原先单通道的值,所以也是显示灰色的

g_maskImage = Scalar::all(0);//黑

setMouseCallback(WINDOW_NAME1,on_Mouse,0);

while(1)

{

int c = waitKey(0);

if((char)c == 27)

break;

if((char)c == '2')

{

g_maskImage = Scalar::all(0);//黑

srcImage.copyTo(g_srcImage);

imshow("image",g_srcImage);

}

if((char)c == '1'||(char)c == ' ')

{

int i,j,compCount = 0;

vector<vector<Point>> contours;//定义轮廓

vector<Vec4i> hierarchy;//定义轮廓的层次

findContours(g_maskImage,contours,hierarchy,RETR_CCOMP,CHAIN_APPROX_SIMPLE);

if(contours.empty())

continue;

Mat maskImage(g_maskImage.size(),CV_32S);

maskImage = Scalar::all(0);

for(int index = 0;index >= 0;index = hierarchy[index][0],compCount++)

drawContours(maskImage,contours,index,Scalar::all(compCount+1),-1,8,hierarchy,INT_MAX);

if(compCount == 0)

continue;

vector<Vec3b> colorTab;

for(i=0;i<compCount;i++)

{

int b = theRNG().uniform(0,255);

int g = theRNG().uniform(0,255);

int r = theRNG().uniform(0,255);

colorTab.push_back(Vec3b((uchar)b,(uchar)g,(uchar)r));

}

//计算处理时间并输出到窗口中

double dTime = (double)getTickCount();

watershed(srcImage,maskImage);

dTime = (double)getTickCount()-dTime;

printf("\t处理时间=%gms\n",dTime*1000./getTickFrequency());

//双层循环,将分水岭图像遍历存入watershedImage中

Mat watershedImage(maskImage.size(),CV_8UC3);

for(i=0;i<maskImage.rows;i++)

for(j=0;j<maskImage.cols;j++)

{

int index = maskImage.at<int>(i,j);

if(index == -1)

watershedImage.at<Vec3b>(i,j) = Vec3b(255,255,255);

else if(index<=0||index>compCount)

watershedImage.at<Vec3b>(i,j) = Vec3b(0,0,0);

else

watershedImage.at<Vec3b>(i,j) = colorTab[index-1];

}

//混合灰度图和分水岭效果图并显示最终的窗口

watershedImage = watershedImage*0.5+grayImage*0.5;

imshow(WINDOW_NAME2,watershedImage);

}

}

waitKey();

return 0;

}

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

以上是 基于OpenCV实现图像分割 的全部内容, 来源链接: utcz.com/p/247042.html

回到顶部