opencv3/C++图像滤波实现方式

图像滤波在opencv中可以有多种实现形式

自定义滤波

如使用3×3的掩模:

对图像进行处理.

使用函数filter2D()实现

#include<opencv2/opencv.hpp>

using namespace cv;

int main()

{

//函数调用filter2D功能

Mat src,dst;

src = imread("E:/image/image/daibola.jpg");

if(!src.data)

{

printf("can not load image \n");

return -1;

}

namedWindow("input", CV_WINDOW_AUTOSIZE);

imshow("input", src);

src.copyTo(dst);

Mat kernel = (Mat_<int>(3,3)<<1,1,1,1,1,-1,-1,-1,-1);

double t = (double)getTickCount();

filter2D(src, dst, src.depth(), kernel);

std::cout<<((double)getTickCount()-t)/getTickFrequency()<<std::endl;

namedWindow("output", CV_WINDOW_AUTOSIZE);

imshow("output", dst);

printf("%d",src.channels());

waitKey();

return 0;

}

通过像素点操作实现

#include<opencv2/opencv.hpp>

using namespace cv;

int main()

{

Mat src, dst;

src = imread("E:/image/image/daibola.jpg");

CV_Assert(src.depth() == CV_8U);

if(!src.data)

{

printf("can not load image \n");

return -1;

}

namedWindow("input", CV_WINDOW_AUTOSIZE);

imshow("input",src);

src.copyTo(dst);

for(int row = 1; row<(src.rows - 1); row++)

{

const uchar* previous = src.ptr<uchar>(row - 1);

const uchar* current = src.ptr<uchar>(row);

const uchar* next = src.ptr<uchar>(row + 1);

uchar* output = dst.ptr<uchar>(row);

for(int col = src.channels(); col < (src.cols - 1)*src.channels(); col++)

{

*output = saturate_cast<uchar>(1 * current[col] + previous[col] - next[col] + current[col - src.channels()] - current[col + src.channels()]);

output++;

}

}

namedWindow("output", CV_WINDOW_AUTOSIZE);

imshow("output",dst);

waitKey();

return 0;

}

特定形式滤波

常用的有:

blur(src,dst,Size(5,5));均值滤波

GaussianBlur(src,dst,Size(5,5),11,11);高斯滤波

medianBlur(src,dst,5);中值滤波(应对椒盐噪声)

bilateralFilter(src,dst,2,0.5,2,4);双边滤波(保留边缘)

#include<opencv2/opencv.hpp>

using namespace cv;

int main()

{

Mat src, dst;

src = imread("E:/image/image/daibola.jpg");

CV_Assert(src.depth() == CV_8U);

if(!src.data)

{

printf("can not load image \n");

return -1;

}

namedWindow("input", CV_WINDOW_AUTOSIZE);

imshow("input",src);

src.copyTo(dst);

//均值滤波

blur(src,dst,Size(5,5));

//中值滤波

//medianBlur(src,dst,5);

namedWindow("output", CV_WINDOW_AUTOSIZE);

imshow("output",dst);

waitKey();

return 0;

}

以上这篇opencv3/C++图像滤波实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 opencv3/C++图像滤波实现方式 的全部内容, 来源链接: utcz.com/p/244658.html

回到顶部