OpenCV实现拼接图像的简单方法
本文实例为大家分享了OpenCV实现拼接图像的具体方法,供大家参考,具体内容如下
用iphone拍摄的两幅图像:
拼接后的图像:
相关代码如下:
//读取图像
Mat leftImg=imread("left.jpg");
Mat rightImg=imread("right.jpg");
if(leftImg.data==NULL||rightImg.data==NULL)
return;
//转化成灰度图
Mat leftGray;
Mat rightGray;
cvtColor(leftImg,leftGray,CV_BGR2GRAY);
cvtColor(rightImg,rightGray,CV_BGR2GRAY);
//获取两幅图像的共同特征点
int minHessian=400;
SurfFeatureDetector detector(minHessian);
vector<KeyPoint> leftKeyPoints,rightKeyPoints;
detector.detect(leftGray,leftKeyPoints);
detector.detect(rightGray,rightKeyPoints);
SurfDescriptorExtractor extractor;
Mat leftDescriptor,rightDescriptor;
extractor.compute(leftGray,leftKeyPoints,leftDescriptor);
extractor.compute(rightGray,rightKeyPoints,rightDescriptor);
FlannBasedMatcher matcher;
vector<DMatch> matches;
matcher.match(leftDescriptor,rightDescriptor,matches);
int matchCount=leftDescriptor.rows;
if(matchCount>15)
{
matchCount=15;
sort(matches.begin(),matches.begin()+leftDescriptor.rows,DistanceLessThan);
}
vector<Point2f> leftPoints;
vector<Point2f> rightPoints;
for(int i=0; i<matchCount; i++)
{
leftPoints.push_back(leftKeyPoints[matches[i].queryIdx].pt);
rightPoints.push_back(rightKeyPoints[matches[i].trainIdx].pt);
}
//获取左边图像到右边图像的投影映射关系
Mat homo=findHomography(leftPoints,rightPoints);
Mat shftMat=(Mat_<double>(3,3)<<1.0,0,leftImg.cols, 0,1.0,0, 0,0,1.0);
//拼接图像
Mat tiledImg;
warpPerspective(leftImg,tiledImg,shftMat*homo,Size(leftImg.cols+rightImg.cols,rightImg.rows));
rightImg.copyTo(Mat(tiledImg,Rect(leftImg.cols,0,rightImg.cols,rightImg.rows)));
//保存图像
imwrite("tiled.jpg",tiledImg);
//显示拼接的图像
imshow("tiled image",tiledImg);
waitKey(0);
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
以上是 OpenCV实现拼接图像的简单方法 的全部内容, 来源链接: utcz.com/p/244451.html